16ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 15ed7/4 16ed7/4 17ed7/4 →
Prime factorization 24
Step size 60.5516¢ 
Octave 20\16ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth 31\16ed7/4 (1877.1¢)
(semiconvergent)
Consistency limit 2
Distinct consistency limit 2

16 equal divisions of 7/4 (abbreviated 16ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 16 equal parts of about 60.6 ¢ each. Each step represents a frequency ratio of (7/4)1/16, or the 16th root of 7/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 60.6 23/22, 24/23
2 121.1 13/12
3 181.7 11/10, 19/17, 21/19
4 242.2 8/7, 15/13, 23/20
5 302.8 6/5
6 363.3 21/17
7 423.9 14/11, 19/15, 24/19
8 484.4 17/13
9 545 11/8, 18/13
10 605.5 10/7, 17/12, 24/17
11 666.1 16/11, 19/13
12 726.6
13 787.2 11/7, 19/12
14 847.7 21/13, 23/14
15 908.3 17/10
16 968.8 7/4

Harmonics

Approximation of harmonics in 16ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.0 -24.9 +22.1 -0.9 -13.8 +22.1 -27.5 +10.8 +10.1 +26.7 -2.8
Relative (%) +18.2 -41.0 +36.4 -1.6 -22.8 +36.4 -45.3 +17.9 +16.7 +44.2 -4.6
Steps
(reduced)
20
(4)
31
(15)
40
(8)
46
(14)
51
(3)
56
(8)
59
(11)
63
(15)
66
(2)
69
(5)
71
(7)
Approximation of harmonics in 16ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -20.3 -27.5 -25.8 -16.4 -0.3 +21.9 -11.2 +21.1 -2.8 -22.8 +21.4
Relative (%) -33.5 -45.3 -42.6 -27.1 -0.5 +36.1 -18.5 +34.9 -4.6 -37.6 +35.3
Steps
(reduced)
73
(9)
75
(11)
77
(13)
79
(15)
81
(1)
83
(3)
84
(4)
86
(6)
87
(7)
88
(8)
90
(10)