This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).
Scale Table
I've had the idea of using a rectangular horogram to represent how mosses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the mosses of an edo. The idea to include scale and step ratio information occurred mid-editing. Here's a few examples.
Temperament Agnostic Information Only
Notes:
- The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
- (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
- Information from the page for 19edo and its subpages (as of time of writing) is used as sample data.
- A few unnamed mosses are given tentative names based on names from their respective pages (EG, klesitonic) or based on existing names (EG, tetric).
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
10
|
9
|
1L 1s
|
10:9
|
Generator Pair
|
1
|
9
|
9
|
2L 1s
|
9:1
|
|
1
|
1
|
8
|
1
|
8
|
2L 3s
|
8:1
|
Pentic
|
1
|
1
|
1
|
7
|
1
|
1
|
7
|
2L 5s
|
7:1
|
Antidiatonic
|
1
|
1
|
1
|
1
|
6
|
1
|
1
|
1
|
6
|
2L 7s
|
6:1
|
Joanatonic
|
1
|
1
|
1
|
1
|
1
|
5
|
1
|
1
|
1
|
1
|
5
|
2L 9s
|
5:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
4
|
1
|
1
|
1
|
1
|
1
|
4
|
2L 11s
|
4:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
1
|
1
|
1
|
3
|
2L 13s
|
3:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
2L 15s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
11
|
8
|
1L 1s
|
11:8
|
Generator Pair
|
3
|
8
|
8
|
2L 1s
|
8:3
|
|
3
|
3
|
5
|
3
|
5
|
2L 3s
|
5:3
|
Pentic
|
3
|
3
|
3
|
2
|
3
|
3
|
2
|
5L 2s
|
3:2
|
Diatonic
|
1
|
2
|
1
|
2
|
1
|
2
|
2
|
1
|
2
|
1
|
2
|
2
|
7L 5s
|
2:1
|
M-chromatic
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
12
|
7
|
1L 1s
|
12:7
|
Generator Pair
|
5
|
7
|
7
|
2L 1s
|
7:5
|
|
5
|
5
|
2
|
5
|
2
|
3L 2s
|
5:2
|
Antipentic
|
3
|
2
|
3
|
2
|
2
|
3
|
2
|
2
|
3L 5s
|
3:2
|
Sensoid
|
1
|
2
|
2
|
1
|
2
|
2
|
2
|
1
|
2
|
2
|
2
|
8L 3s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
13
|
6
|
1L 1s
|
13:6
|
Generator Pair
|
7
|
6
|
6
|
1L 2s
|
7:6
|
|
1
|
6
|
6
|
6
|
3L 1s
|
6:1
|
Tetric (placeholder name for sake of completness)
|
1
|
1
|
5
|
1
|
5
|
1
|
5
|
3L 4s
|
5:1
|
Mosh
|
1
|
1
|
1
|
4
|
1
|
1
|
4
|
1
|
1
|
4
|
3L 7s
|
4:1
|
Sephiroid
|
1
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
3
|
3L 10s
|
3:1
|
|
1
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
2
|
3L 13s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
14
|
5
|
1L 1s
|
14:5
|
Generator Pair
|
9
|
5
|
5
|
1L 2s
|
9:5
|
|
4
|
5
|
5
|
5
|
3L 1s
|
5:4
|
Tetric
|
4
|
4
|
1
|
4
|
1
|
4
|
1
|
4L 3s
|
4:1
|
Smitonic
|
3
|
1
|
3
|
1
|
1
|
3
|
1
|
1
|
3
|
1
|
1
|
4L 7s
|
3:1
|
Kleistonic (proposed name from 4L 7s page)
|
2
|
1
|
1
|
2
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
4L 11s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
15
|
4
|
1L 1s
|
15:4
|
Generator Pair
|
11
|
4
|
4
|
1L 2s
|
11:4
|
|
7
|
4
|
4
|
4
|
1L 3s
|
7:4
|
|
3
|
4
|
4
|
4
|
4
|
4L 1s
|
4:3
|
Manic
|
3
|
3
|
1
|
3
|
1
|
3
|
1
|
3
|
1
|
5L 4s
|
3:1
|
Semiquartal
|
2
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
5L 9s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
16
|
3
|
1L 1s
|
16:3
|
Generator Pair
|
13
|
3
|
3
|
1L 2s
|
13:3
|
|
10
|
3
|
3
|
3
|
1L 3s
|
10:3
|
|
7
|
3
|
3
|
3
|
3
|
1L 4s
|
7:3
|
|
4
|
3
|
3
|
3
|
3
|
3
|
1L 5s
|
4:3
|
|
1
|
3
|
3
|
3
|
3
|
3
|
3
|
6L 1s
|
3:1
|
Archeotonic
|
1
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
6L 7s
|
2:1
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Step Pattern (19edo)
|
Mos
|
Step Ratio
|
TAMNAMS Name (if applicable)
|
17
|
2
|
1L 1s
|
17:2
|
Generator Pair
|
15
|
2
|
2
|
1L 2s
|
15:2
|
|
13
|
2
|
2
|
2
|
1L 3s
|
13:2
|
|
11
|
2
|
2
|
2
|
2
|
1L 4s
|
11:2
|
|
9
|
2
|
2
|
2
|
2
|
2
|
1L 5s
|
9:2
|
|
7
|
2
|
2
|
2
|
2
|
2
|
2
|
1L 6s
|
7:2
|
|
5
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
1L 7s
|
5:2
|
|
3
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
1L 8s
|
3:2
|
|
1
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
9L 1s
|
2:1
|
Sinatonic
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
Temperament-Agnostic and Temperament Information
Notes:
- The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
- (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
- Information from the page for 19edo and its subpages (as of time of writing) is used as sample data.
- A few unnamed mosses are given tentative names based on names from their respective pages (EG, klesitonic) or based on existing names (EG, tetric).
- Scale codes are given for scales whose step sizes are single-digit numbers.
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
10
|
9
|
|
1L 1s
|
10:9
|
|
|
1
|
9
|
9
|
199
|
2L 1s
|
9:1
|
|
|
1
|
1
|
8
|
1
|
8
|
11818
|
2L 3s
|
8:1
|
pentic
|
liese[5]
|
1
|
1
|
1
|
7
|
1
|
1
|
7
|
1117117
|
2L 5s
|
7:1
|
antidiatonic
|
liese[7]
|
1
|
1
|
1
|
1
|
6
|
1
|
1
|
1
|
6
|
111161116
|
2L 7s
|
6:1
|
joanatonic
|
liese[9]
|
1
|
1
|
1
|
1
|
1
|
5
|
1
|
1
|
1
|
1
|
5
|
11111511115
|
2L 9s
|
5:1
|
|
liese[11]
|
1
|
1
|
1
|
1
|
1
|
1
|
4
|
1
|
1
|
1
|
1
|
1
|
4
|
1111114111114
|
2L 11s
|
4:1
|
|
liese[13]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
1
|
1
|
1
|
3
|
111111131111113
|
2L 13s
|
3:1
|
|
liese[15]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
11111111211111112
|
2L 15s
|
2:1
|
|
liese[17]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
11
|
8
|
|
1L 1s
|
11:8
|
|
|
3
|
8
|
8
|
388
|
2L 1s
|
8:3
|
|
|
3
|
3
|
5
|
3
|
5
|
33535
|
2L 3s
|
5:3
|
pentic
|
meantone[5]
|
3
|
3
|
3
|
2
|
3
|
3
|
2
|
3332332
|
5L 2s
|
3:2
|
diatonic
|
meantone[7]
|
1
|
2
|
1
|
2
|
1
|
2
|
2
|
1
|
2
|
1
|
2
|
2
|
121212212122
|
7L 5s
|
2:1
|
m-chromatic
|
meantone[12]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
12
|
7
|
|
1L 1s
|
12:7
|
|
|
5
|
7
|
7
|
577
|
2L 1s
|
7:5
|
|
|
5
|
5
|
2
|
5
|
2
|
55252
|
3L 2s
|
5:2
|
antipentic
|
sensi[5]
|
3
|
2
|
3
|
2
|
2
|
3
|
2
|
2
|
32322322
|
3L 5s
|
3:2
|
sensoid
|
sensi[8]
|
1
|
2
|
2
|
1
|
2
|
2
|
2
|
1
|
2
|
2
|
2
|
12212221222
|
8L 3s
|
2:1
|
|
sensi[11]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
13
|
6
|
|
1L 1s
|
13:6
|
|
|
7
|
6
|
6
|
766
|
1L 2s
|
7:6
|
|
|
1
|
6
|
6
|
6
|
1666
|
3L 1s
|
6:1
|
tetric
|
|
1
|
1
|
5
|
1
|
5
|
1
|
5
|
1151515
|
3L 4s
|
5:1
|
mosh
|
magic[7]
|
1
|
1
|
1
|
4
|
1
|
1
|
4
|
1
|
1
|
4
|
1114114114
|
3L 7s
|
4:1
|
sephiroid
|
magic[10]
|
1
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
3
|
1
|
1
|
1
|
3
|
1111311131113
|
3L 10s
|
3:1
|
|
magic[13]
|
1
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
1
|
2
|
1111121111211112
|
3L 13s
|
2:1
|
|
magic[16]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
14
|
5
|
|
1L 1s
|
14:5
|
|
|
9
|
5
|
5
|
955
|
1L 2s
|
9:5
|
|
|
4
|
5
|
5
|
5
|
4555
|
3L 1s
|
5:4
|
tetric
|
|
4
|
4
|
1
|
4
|
1
|
4
|
1
|
4414141
|
4L 3s
|
4:1
|
smitonic
|
kleismic[7]
|
3
|
1
|
3
|
1
|
1
|
3
|
1
|
1
|
3
|
1
|
1
|
31311311311
|
4L 7s
|
3:1
|
kleistonic
|
kleismic[11]
|
2
|
1
|
1
|
2
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
2
|
1
|
1
|
1
|
211211121112111
|
4L 11s
|
2:1
|
|
kleismic[15]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
15
|
4
|
|
1L 1s
|
15:4
|
|
|
11
|
4
|
4
|
|
1L 2s
|
11:4
|
|
|
7
|
4
|
4
|
4
|
7444
|
1L 3s
|
7:4
|
|
|
3
|
4
|
4
|
4
|
4
|
34444
|
4L 1s
|
4:3
|
manic
|
godzilla[5]
|
3
|
3
|
1
|
3
|
1
|
3
|
1
|
3
|
1
|
331313131
|
5L 4s
|
3:1
|
semiquartal
|
godzilla[9]
|
2
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
2
|
1
|
1
|
21211211211211
|
5L 9s
|
2:1
|
|
godzilla[14]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
16
|
3
|
|
1L 1s
|
16:3
|
|
|
13
|
3
|
3
|
|
1L 2s
|
13:3
|
|
|
10
|
3
|
3
|
3
|
|
1L 3s
|
10:3
|
|
|
7
|
3
|
3
|
3
|
3
|
73333
|
1L 4s
|
7:3
|
|
|
4
|
3
|
3
|
3
|
3
|
3
|
433333
|
1L 5s
|
4:3
|
|
deutone[6]
|
1
|
3
|
3
|
3
|
3
|
3
|
3
|
1333333
|
6L 1s
|
3:1
|
archeotonic
|
deutone[7]
|
1
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
1
|
2
|
1121212121212
|
6L 7s
|
2:1
|
|
deutone[13]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Step Pattern
|
Temperament-Agnostic Information
|
Temperament
|
Scale Code
|
Mos
|
Step Ratio
|
TAMNAMS Name
|
17
|
2
|
|
1L 1s
|
17:2
|
|
|
15
|
2
|
2
|
|
1L 2s
|
15:2
|
|
|
13
|
2
|
2
|
2
|
|
1L 3s
|
13:2
|
|
|
11
|
2
|
2
|
2
|
2
|
|
1L 4s
|
11:2
|
|
|
9
|
2
|
2
|
2
|
2
|
2
|
922222
|
1L 5s
|
9:2
|
|
|
7
|
2
|
2
|
2
|
2
|
2
|
2
|
7222222
|
1L 6s
|
7:2
|
|
|
5
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
52222222
|
1L 7s
|
5:2
|
|
|
3
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
322222222
|
1L 8s
|
3:2
|
|
negri[9]
|
1
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
1222222222
|
9L 1s
|
2:1
|
sinatonic
|
negri[10]
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
|
|
|
Mode and Interval Table
Based on the scale table, there is also the idea of a mode table. Since the modes of a scale affect its scale degrees, this also serves as an interval table.
Notes:
- The names of mosses and intervals are based on TAMNAMS naming conventions.
- As this is an interval table, intervals are based on the root of the scale and whichever scale degree is k steps up from the root. For intervals that have two sizes (major and minor, augmented and perfect, or perfect and diminished), bold text denotes the larger of the two intervals. (This is far more striking with color coding.)
Mos
|
Scale Code
|
UDP
|
Mode Name
|
0-step
(unison)
|
1-step
|
2-step
|
3-step
|
4-step
|
5-step
|
6-step
|
7-step
(octave)
|
Diatonic (5L 2s)
|
LLLsLLs
|
6|0
|
Lydian
|
Perfect
|
Maj
|
Maj
|
Aug
|
Perfect
|
Maj
|
Maj
|
Perfect
|
LLsLLLs
|
5|1
|
Ionian
|
Perfect
|
Maj
|
Maj
|
Perfect
|
Perfect
|
Maj
|
Maj
|
Perfect
|
LLsLLsL
|
4|2
|
Mixolydian
|
Perfect
|
Maj
|
Maj
|
Perfect
|
Perfect
|
Maj
|
min
|
Perfect
|
LsLLLsL
|
3|3
|
Dorian
|
Perfect
|
Maj
|
min
|
Perfect
|
Perfect
|
Maj
|
min
|
Perfect
|
LsLLsLL
|
2|4
|
Aeolian
|
Perfect
|
Maj
|
min
|
Perfect
|
Perfect
|
min
|
min
|
Perfect
|
sLLLsLL
|
1|5
|
Phrygian
|
Perfect
|
min
|
min
|
Perfect
|
Perfect
|
min
|
min
|
Perfect
|
sLLsLLL
|
0|6
|
Locrian
|
Perfect
|
min
|
min
|
Perfect
|
dim
|
min
|
min
|
Perfect
|
Mos
|
Scale Code
|
UDP
|
Mode Name
|
0-step
(unison)
|
1-step
|
2-step
|
3-step
|
4-step
|
5-step
|
6-step
|
7-step
(octave)
|
Mosh (3L 4s)
|
LsLsLss
|
6|0
|
Dril
|
Perfect
|
Maj
|
Perfect
|
Maj
|
Maj
|
Aug
|
Maj
|
Perfect
|
LsLssLs
|
5|1
|
Gil
|
Perfect
|
Maj
|
Perfect
|
Maj
|
Maj
|
Perfect
|
Maj
|
Perfect
|
LssLsLs
|
4|2
|
Kleeth
|
Perfect
|
Maj
|
Perfect
|
min
|
Maj
|
Perfect
|
Maj
|
Perfect
|
sLsLsLs
|
3|3
|
Bish
|
Perfect
|
min
|
Perfect
|
min
|
Maj
|
Perfect
|
Maj
|
Perfect
|
sLsLssL
|
2|4
|
Fish
|
Perfect
|
min
|
Perfect
|
min
|
Maj
|
Perfect
|
min
|
Perfect
|
sLssLsL
|
1|5
|
Jwl
|
Perfect
|
min
|
Perfect
|
min
|
min
|
Perfect
|
min
|
Perfect
|
ssLsLsL
|
0|6
|
Led
|
Perfect
|
min
|
dim
|
min
|
min
|
Perfect
|
min
|
Perfect
|