145edo
The 145 equal divisions of the octave (145EDO) or 145(-tone) equal temperament (145TET, 145ET) when viewed from a regular temperament perspective, is the tuning system derived by dividing the octave into 145 equal parts of 8.276 cents each.
Theory
145EDO is the optimal patent val for the 11-limit mystery temperament and the 11-limit rank-3 pele temperament.
It tempers out 1600000/1594323 in the 5-limit; 4375/4374 and 5120/5103 in the 7-limit; 441/440 and 896/891 in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit; 595/594 in the 17-limit; 343/342 and 476/475 in the 19-limit.
The 145c val provides a tuning for magic which is nearly identical to the POTE tuning.
It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows werckismic chords, because it tempers out 196/195 it allows mynucumic chords, because it tempers out 352/351 it allows minthmic chords, because it tempers out 364/363 it allows gentle chords, and because it tempers out 847/845 it allows the cuthbert triad, making it a very flexible harmonic system. The same is true of 232edo, the optimal patent val for 13-limit mystery.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 1600000/1594323, [28 -3 -10⟩ | [⟨145 230 337]] | -0.695 | 0.498 | 6.02 |
2.3.5.7 | 4375/4374, 5120/5103, 50421/50000 | [⟨145 230 337 407]] | -0.472 | 0.578 | 6.99 |
2.3.5.7.11 | 441/440, 896/891, 3388/3375, 4375/4374 | [⟨145 230 337 407 502]] | -0.561 | 0.547 | 6.61 |
2.3.5.7.11.13 | 196/195, 352/351, 364/363, 676/675, 4375/4374 | [⟨145 230 337 407 502 537]] | -0.630 | 0.522 | 6.32 |
2.3.5.7.11.13.17 | 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155 | [⟨145 230 337 407 502 537 593]] | -0.632 | 0.484 | 5.85 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 2\145 | 16.55 | 100/99 | Quincy |
1 | 12\145 | 99.31 | 35/33, 18/17 | Quinticosiennic |
1 | 14\145 | 115.86 | 77/72 | Countermiracle |
1 | 39\145 | 322.76 | 3087/2560 | Senior / seniority |
1 | 41\145 | 339.31 | 243/200 | Amity |
29 | 60\145 (2\145) |
496.55 (16.55) |
4/3 (100/99) |
Mystery |