190edo

From Xenharmonic Wiki
Revision as of 03:16, 19 April 2024 by FloraC (talk | contribs) (Notable in the 13-, 19- and 23-limit)
Jump to navigation Jump to search
← 189edo 190edo 191edo →
Prime factorization 2 × 5 × 19
Step size 6.31579 ¢ 
Fifth 111\190 (701.053 ¢)
Semitones (A1:m2) 17:15 (107.4 ¢ : 94.74 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024 and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 847/845, 625/624, 729/728, 1575/1573 and 1001/1000, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.

Prime harmonics

Approximation of odd harmonics in 190edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.90 -1.05 -2.51 -1.80 -1.84 -0.53 -1.95 +2.41 -0.67 +2.90 -3.01
Relative (%) -14.3 -16.6 -39.7 -28.6 -29.2 -8.4 -30.9 +38.2 -10.6 +46.0 -47.7
Steps
(reduced)
301
(111)
441
(61)
533
(153)
602
(32)
657
(87)
703
(133)
742
(172)
777
(17)
807
(47)
835
(75)
859
(99)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-301 190 [190 301]] +0.285 0.285 4.51
2.3.5 2109375/2097152, [-7 22 -12 [190 301 441]] +0.341 0.246 3.89
2.3.5.7 1029/1024, 4375/4374, 235298/234375 [190 301 441 533]] +0.479 0.321 5.07
2.3.5.7.11 385/384, 441/440, 4375/4374, 234375/234256 [190 301 441 533 657]] +0.490 0.288 4.55
2.3.5.7.11.13 385/384, 441/440, 625/624, 729/728, 847/845 [190 301 441 533 657 703]] +0.432 0.293 4.63
2.3.5.7.11.13.17 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 [190 301 441 533 657 703 776]] (190g) +0.507 0.327 5.18
2.3.5.7.11.13.17.19 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 [190 301 441 533 657 703 776 807]] (190g) +0.463 0.327 5.17
2.3.5.7.11.13.17.19.23 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 [190 301 441 533 657 703 776 807 859]] (190g) +0.486 0.315 4.98
  • 190et (190g val) has a lower relative error in the 23-limit than any previous equal temperaments, being the first to beat 94. However, 193, only slightly larger, beats it.
  • It is also prominent in the 13- and 19-limit, with lower absolute errors than any previous equal temperaments. It beats 183 in either subgroup and is bettered by 198 in the 13-limit, and by 193 in the 19-limit.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 37\190 233.68 8/7 Slendric
1 43\190 271.58 75/64 Sabric
1 49\190 309.47 448/375 Triwell
1 71\190 448.42 35/27 Semidimfourth
1 83\190 524.21 65/48 Widefourth
2 28\190 176.84 195/176 Quatracot
2 29\190 183.16 10/9 Unidec / ekadash
2 59\190
(36\190)
372.63
(227.37)
26/21
(297/260)
Essence
2 71\190
(24\190)
448.42
(151.58)
35/27
(12/11)
Neusec
5 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Pental
10 50\190
(7\190)
315.79
(45.79)
6/5
(40/39)
Deca
10 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Decal
19 79\190
(1\190)
498.95
(6.32)
4/3
(225/224)
Enneadecal
38 79\190
(1\190)
265.26
(6.32)
4/3
(225/224)
Hemienneadecal
38 42\190
(2\190)
265.26
(12.63)
500/429
(144/143)
Semihemienneadecal

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Scales

Music

Chris Vaisvil