102edo

From Xenharmonic Wiki
Revision as of 21:11, 30 May 2023 by Eliora (talk | contribs)
Jump to navigation Jump to search
← 101edo 102edo 103edo →
Prime factorization 2 × 3 × 17
Step size 11.7647 ¢ 
Fifth 60\102 (705.882 ¢) (→ 10\17)
Semitones (A1:m2) 12:6 (141.2 ¢ : 70.59 ¢)
Dual sharp fifth 60\102 (705.882 ¢) (→ 10\17)
Dual flat fifth 59\102 (694.118 ¢)
Dual major 2nd 17\102 (200 ¢) (→ 1\6)
Consistency limit 5
Distinct consistency limit 5

102edo is the equal division of the octave into 102 steps of size 11.765 cents each. In the 5-limit it tempers out the same commas (2048/2025, 15625/15552, 20000/19683) as 34edo. In the 7-limit it tempers out 686/675 and 1029/1024; in the 11-limit 385/384, 441/440 and 4000/3993; in the 13-limit 91/90 and 169/168; in the 17-limit 136/135 and 154/153; and in the 19-limit 133/132 and 190/189. It is the optimal patent val for 13-limit echidnic temperament, and the rank five temperament tempering out 91/90.

Prime harmonics

Script error: No such module "primes_in_edo".

13-limit Echidnic

Degree Cents Difference from 46edo
2 23.529 -2.5575¢
4 47.059 -5.115¢
7 82.353 4.092¢
9 105.882 1.5345¢
11 129.412 -1.023¢
13 152.941 8.184¢
16 188.235 5.627¢
18 211.765 3.069¢
20 235.294 0.511¢
22 258.824 -2.046¢
24 282.353 -4.604¢
27 317.647 4.604¢
29 341.176 2.046¢
31 364.706 -0.5115¢
33 388.235 -3.069¢
35 411.765 -5.627¢
38 447.059 3.581¢
40 470.588 1.023¢
42 494.117 -1.5345¢
44 517.647 -4.092¢
47 552.941 5.115¢
49 576.471 2.5575¢