1L 1s

From Xenharmonic Wiki
Revision as of 19:56, 12 February 2023 by Inthar (talk | contribs) (TAMNAMS now only uses "dicoid" for 7L 3s)
Jump to navigation Jump to search
1L 1s 2L 1s →
↓ 1L 2s 2L 2s ↘
┌╥┬┐
│║││
││││
└┴┴┘
Scale structure
Step pattern Ls
sL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 1\2 to 1\1 (600.0 ¢ to 1200.0 ¢)
Dark 0\1 to 1\2 (0.0 ¢ to 600.0 ¢)
TAMNAMS information
Name monowood
Prefix monwd-
Abbrev. w
Related MOS scales
Parent none
Sister 1L 1s (self)
Daughters 2L 1s, 1L 2s
Neutralized 2edo
2-Flought 3L 1s, 1L 3s
Equal tunings
Equalized (L:s = 1:1) 1\2 (600.0 ¢)
Supersoft (L:s = 4:3) 4\7 (685.7 ¢)
Soft (L:s = 3:2) 3\5 (720.0 ¢)
Semisoft (L:s = 5:3) 5\8 (750.0 ¢)
Basic (L:s = 2:1) 2\3 (800.0 ¢)
Semihard (L:s = 5:2) 5\7 (857.1 ¢)
Hard (L:s = 3:1) 3\4 (900.0 ¢)
Superhard (L:s = 4:1) 4\5 (960.0 ¢)
Collapsed (L:s = 1:0) 1\1 (1200.0 ¢)

1L 1s is the simplest valid MOS pattern, often referred to as the trivial MOS scale.

Names

TAMNAMS uses two names for this mos: trivial and monowood. The name "trivial" references how this is the simplest possible mos pattern and is used to refer to this mos with any period, and the name "monowood" is an extension of the other n-wood names (such as biwood, triwood, and tetrawood), named after blackwood and whitewood) and specifically refers to this mos with an octave period.

Modes and intervals

Mode UDP Mode name Rotational order mosunison 1-mosstep mosoctave
Ls 1|0 1L 1s 1|0 0 0 (perfect) L (major) L+s (perfect)
sL 0|1 1L 1s 0|1 1 0 (perfect) s (minor) L+s (perfect)

Properties

All single-period mosses ultimately start with a generating interval and, for octave-equivalent scales, the generator's octave complement. Hence, this scale can also be seen as the parent of every moment-of-symmetry scale and is thus found as the root of various scale trees, such as the mos family tree.

This mos is also its own sister, though this property is also true of all nL ns scales.

Stacking a generating interval, or one of its two sizes of mossteps, just once produces this mos's daughter mosses of 2L 1s and 1L 2s.

Scale tree

As the mos 1L 1s is related to all single-period mosses, the scale tree depicted shows how more familiar mosses are related, rather than related temperaments.

Generator Bright gen. Dark gen. L s L/s Selected basic mosses Other comments
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 balzano (2L 7s)
5\9 666.667 533.333 5 4 1.250 antidiatonic (2L 5s)
9\16 675.000 525.000 9 7 1.286 armotonic (7L 2s)
4\7 685.714 514.286 4 3 1.333 pentic (2L 3s)
11\19 694.737 505.263 11 8 1.375 m-chromatic (7L 5s)
7\12 700.000 500.000 7 5 1.400 diatonic (5L 2s)
10\17 705.882 494.118 10 7 1.429 p-chromatic (5L 7s)
3\5 720.000 480.000 3 2 1.500 trial (2L 1s)
11\18 733.333 466.667 11 7 1.571 p-noble (5L 8s)
8\13 738.462 461.538 8 5 1.600 oneirotonic (5L 3s)
13\21 742.857 457.143 13 8 1.625 m-noble (8L 5s)
5\8 750.000 450.000 5 3 1.667 antipentic (3L 2s)
12\19 757.895 442.105 12 7 1.714 sensitonic (8L 3s)
7\11 763.636 436.364 7 4 1.750 checkertonic (3L 5s)
9\14 771.429 428.571 9 5 1.800 quadroid (3L 8s)
2\3 800.000 400.000 2 1 2.000 2L 1s and 1L 2s separate here.
9\13 830.769 369.231 9 4 2.250 sephiroid (3L 7s)
7\10 840.000 360.000 7 3 2.333 mosh (3L 4s)
12\17 847.059 352.941 12 5 2.400 dicoid (7L 3s)
5\7 857.143 342.857 5 2 2.500 tetric (3L 1s)
13\18 866.667 333.333 13 5 2.600 antikleismic (7L 4s)
8\11 872.727 327.273 8 3 2.667 smitonic (4L 3s)
11\15 880.000 320.000 11 4 2.750 kleismic (4L 7s)
3\4 900.000 300.000 3 1 3.000 antrial (1L 2s)
10\13 923.077 276.923 10 3 3.333 gramitonic (4L 5s)
7\9 933.333 266.667 7 2 3.500 manual (4L 1s)
11\14 942.857 257.143 11 3 3.667 semiquartal (5L 4s)
4\5 960.000 240.000 4 1 4.000 antetric (1L 4s)
9\11 981.818 218.182 9 2 4.500 machinoid (5L 1s)
5\6 1000.000 200.000 5 1 5.000 pedal (1L 4s)
6\7 1028.571 171.429 6 1 6.000 antimachinoid (1L 5s)
1\1 1200.000 0.000 1 0 → inf