1L 1s
1L 1s | 2L 1s → | |
↓ 1L 2s | 2L 2s ↘ |
┌╥┬┐ │║││ ││││ └┴┴┘
sL
1L 1s is the simplest valid MOS pattern, often referred to as the trivial MOS scale.
Names
TAMNAMS uses two names for this mos: trivial and monowood. The name "trivial" references how this is the simplest possible mos pattern and is used to refer to this mos with any period, and the name "monowood" is an extension of the other n-wood names (such as biwood, triwood, and tetrawood), named after blackwood and whitewood) and specifically refers to this mos with an octave period.
Modes and intervals
Mode | UDP | Mode name | Rotational order | mosunison | 1-mosstep | mosoctave |
---|---|---|---|---|---|---|
Ls | 1|0 | 1L 1s 1| | 0 | 0 (perfect) | L (major) | L+s (perfect) |
sL | 0|1 | 1L 1s 0| | 1 | 0 (perfect) | s (minor) | L+s (perfect) |
Properties
All single-period mosses ultimately start with a generating interval and, for octave-equivalent scales, the generator's octave complement. Hence, this scale can also be seen as the parent of every moment-of-symmetry scale and is thus found as the root of various scale trees, such as the mos family tree.
This mos is also its own sister, though this property is also true of all nL ns scales.
Stacking a generating interval, or one of its two sizes of mossteps, just once produces this mos's daughter mosses of 2L 1s and 1L 2s.
Scale tree
As the mos 1L 1s is related to all single-period mosses, the scale tree depicted shows how more familiar mosses are related, rather than related temperaments.
Generator | Bright gen. | Dark gen. | L | s | L/s | Selected basic mosses | Other comments | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1\2 | 600.000 | 600.000 | 1 | 1 | 1.000 | |||||||
6\11 | 654.545 | 545.455 | 6 | 5 | 1.200 | balzano (2L 7s) | ||||||
5\9 | 666.667 | 533.333 | 5 | 4 | 1.250 | antidiatonic (2L 5s) | ||||||
9\16 | 675.000 | 525.000 | 9 | 7 | 1.286 | armotonic (7L 2s) | ||||||
4\7 | 685.714 | 514.286 | 4 | 3 | 1.333 | pentic (2L 3s) | ||||||
11\19 | 694.737 | 505.263 | 11 | 8 | 1.375 | m-chromatic (7L 5s) | ||||||
7\12 | 700.000 | 500.000 | 7 | 5 | 1.400 | diatonic (5L 2s) | ||||||
10\17 | 705.882 | 494.118 | 10 | 7 | 1.429 | p-chromatic (5L 7s) | ||||||
3\5 | 720.000 | 480.000 | 3 | 2 | 1.500 | trial (2L 1s) | ||||||
11\18 | 733.333 | 466.667 | 11 | 7 | 1.571 | p-noble (5L 8s) | ||||||
8\13 | 738.462 | 461.538 | 8 | 5 | 1.600 | oneirotonic (5L 3s) | ||||||
13\21 | 742.857 | 457.143 | 13 | 8 | 1.625 | m-noble (8L 5s) | ||||||
5\8 | 750.000 | 450.000 | 5 | 3 | 1.667 | antipentic (3L 2s) | ||||||
12\19 | 757.895 | 442.105 | 12 | 7 | 1.714 | m-chro checkertonic (8L 3s) | ||||||
7\11 | 763.636 | 436.364 | 7 | 4 | 1.750 | checkertonic (3L 5s) | ||||||
9\14 | 771.429 | 428.571 | 9 | 5 | 1.800 | p-chro checkertonic (3L 8s) | ||||||
2\3 | 800.000 | 400.000 | 2 | 1 | 2.000 | 2L 1s and 1L 2s separate here. | ||||||
9\13 | 830.769 | 369.231 | 9 | 4 | 2.250 | sephiroid (3L 7s) | ||||||
7\10 | 840.000 | 360.000 | 7 | 3 | 2.333 | mosh (3L 4s) | ||||||
12\17 | 847.059 | 352.941 | 12 | 5 | 2.400 | zaltertic (7L 3s) | ||||||
5\7 | 857.143 | 342.857 | 5 | 2 | 2.500 | tetric (3L 1s) | ||||||
13\18 | 866.667 | 333.333 | 13 | 5 | 2.600 | antikleismic (7L 4s) | ||||||
8\11 | 872.727 | 327.273 | 8 | 3 | 2.667 | smitonic (4L 3s) | ||||||
11\15 | 880.000 | 320.000 | 11 | 4 | 2.750 | kleismic (4L 7s) | ||||||
3\4 | 900.000 | 300.000 | 3 | 1 | 3.000 | antrial (1L 2s) | ||||||
10\13 | 923.077 | 276.923 | 10 | 3 | 3.333 | gramitonic (4L 5s) | ||||||
7\9 | 933.333 | 266.667 | 7 | 2 | 3.500 | manual (4L 1s) | ||||||
11\14 | 942.857 | 257.143 | 11 | 3 | 3.667 | semiquartal (5L 4s) | ||||||
4\5 | 960.000 | 240.000 | 4 | 1 | 4.000 | antetric (1L 4s) | ||||||
9\11 | 981.818 | 218.182 | 9 | 2 | 4.500 | machinoid (5L 1s) | ||||||
5\6 | 1000.000 | 200.000 | 5 | 1 | 5.000 | pedal (1L 4s) | ||||||
6\7 | 1028.571 | 171.429 | 6 | 1 | 6.000 | antimachinoid (1L 5s) | ||||||
1\1 | 1200.000 | 0.000 | 1 | 0 | → inf |