19L 6s
↖ 18L 5s | ↑ 19L 5s | 20L 5s ↗ |
← 18L 6s | 19L 6s | 20L 6s → |
↙ 18L 7s | ↓ 19L 7s | 20L 7s ↘ |
┌╥╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬┐ │║║║║│║║║│║║║│║║║│║║║│║║║││ │││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLsLLLsLLLsLLLsLLLsLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
19L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 6 small steps, repeating every octave. 19L 6s is a great-grandchild scale of 6L 1s, expanding it by 18 tones. Generators that produce this scale range from 1008 ¢ to 1010.5 ¢, or from 189.5 ¢ to 192 ¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
24|0 | 1 | LLLLsLLLsLLLsLLLsLLLsLLLs |
23|1 | 22 | LLLsLLLLsLLLsLLLsLLLsLLLs |
22|2 | 18 | LLLsLLLsLLLLsLLLsLLLsLLLs |
21|3 | 14 | LLLsLLLsLLLsLLLLsLLLsLLLs |
20|4 | 10 | LLLsLLLsLLLsLLLsLLLLsLLLs |
19|5 | 6 | LLLsLLLsLLLsLLLsLLLsLLLLs |
18|6 | 2 | LLLsLLLsLLLsLLLsLLLsLLLsL |
17|7 | 23 | LLsLLLLsLLLsLLLsLLLsLLLsL |
16|8 | 19 | LLsLLLsLLLLsLLLsLLLsLLLsL |
15|9 | 15 | LLsLLLsLLLsLLLLsLLLsLLLsL |
14|10 | 11 | LLsLLLsLLLsLLLsLLLLsLLLsL |
13|11 | 7 | LLsLLLsLLLsLLLsLLLsLLLLsL |
12|12 | 3 | LLsLLLsLLLsLLLsLLLsLLLsLL |
11|13 | 24 | LsLLLLsLLLsLLLsLLLsLLLsLL |
10|14 | 20 | LsLLLsLLLLsLLLsLLLsLLLsLL |
9|15 | 16 | LsLLLsLLLsLLLLsLLLsLLLsLL |
8|16 | 12 | LsLLLsLLLsLLLsLLLLsLLLsLL |
7|17 | 8 | LsLLLsLLLsLLLsLLLsLLLLsLL |
6|18 | 4 | LsLLLsLLLsLLLsLLLsLLLsLLL |
5|19 | 25 | sLLLLsLLLsLLLsLLLsLLLsLLL |
4|20 | 21 | sLLLsLLLLsLLLsLLLsLLLsLLL |
3|21 | 17 | sLLLsLLLsLLLLsLLLsLLLsLLL |
2|22 | 13 | sLLLsLLLsLLLsLLLLsLLLsLLL |
1|23 | 9 | sLLLsLLLsLLLsLLLsLLLLsLLL |
0|24 | 5 | sLLLsLLLsLLLsLLLsLLLsLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 48.0 ¢ |
Major 1-mosstep | M1ms | L | 48.0 ¢ to 63.2 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2 ¢ to 96.0 ¢ |
Major 2-mosstep | M2ms | 2L | 96.0 ¢ to 126.3 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 126.3 ¢ to 144.0 ¢ |
Major 3-mosstep | M3ms | 3L | 144.0 ¢ to 189.5 ¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 3L + s | 189.5 ¢ to 192.0 ¢ |
Augmented 4-mosstep | A4ms | 4L | 192.0 ¢ to 252.6 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5 ¢ to 240.0 ¢ |
Major 5-mosstep | M5ms | 4L + s | 240.0 ¢ to 252.6 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 252.6 ¢ to 288.0 ¢ |
Major 6-mosstep | M6ms | 5L + s | 288.0 ¢ to 315.8 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 315.8 ¢ to 336.0 ¢ |
Major 7-mosstep | M7ms | 6L + s | 336.0 ¢ to 378.9 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 378.9 ¢ to 384.0 ¢ |
Major 8-mosstep | M8ms | 7L + s | 384.0 ¢ to 442.1 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 378.9 ¢ to 432.0 ¢ |
Major 9-mosstep | M9ms | 7L + 2s | 432.0 ¢ to 442.1 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 7L + 3s | 442.1 ¢ to 480.0 ¢ |
Major 10-mosstep | M10ms | 8L + 2s | 480.0 ¢ to 505.3 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 8L + 3s | 505.3 ¢ to 528.0 ¢ |
Major 11-mosstep | M11ms | 9L + 2s | 528.0 ¢ to 568.4 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 568.4 ¢ to 576.0 ¢ |
Major 12-mosstep | M12ms | 10L + 2s | 576.0 ¢ to 631.6 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 9L + 4s | 568.4 ¢ to 624.0 ¢ |
Major 13-mosstep | M13ms | 10L + 3s | 624.0 ¢ to 631.6 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 10L + 4s | 631.6 ¢ to 672.0 ¢ |
Major 14-mosstep | M14ms | 11L + 3s | 672.0 ¢ to 694.7 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 11L + 4s | 694.7 ¢ to 720.0 ¢ |
Major 15-mosstep | M15ms | 12L + 3s | 720.0 ¢ to 757.9 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 12L + 4s | 757.9 ¢ to 768.0 ¢ |
Major 16-mosstep | M16ms | 13L + 3s | 768.0 ¢ to 821.1 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 12L + 5s | 757.9 ¢ to 816.0 ¢ |
Major 17-mosstep | M17ms | 13L + 4s | 816.0 ¢ to 821.1 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 13L + 5s | 821.1 ¢ to 864.0 ¢ |
Major 18-mosstep | M18ms | 14L + 4s | 864.0 ¢ to 884.2 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 14L + 5s | 884.2 ¢ to 912.0 ¢ |
Major 19-mosstep | M19ms | 15L + 4s | 912.0 ¢ to 947.4 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 15L + 5s | 947.4 ¢ to 960.0 ¢ |
Major 20-mosstep | M20ms | 16L + 4s | 960.0 ¢ to 1010.5 ¢ | |
21-mosstep | Diminished 21-mosstep | d21ms | 15L + 6s | 947.4 ¢ to 1008.0 ¢ |
Perfect 21-mosstep | P21ms | 16L + 5s | 1008.0 ¢ to 1010.5 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 16L + 6s | 1010.5 ¢ to 1056.0 ¢ |
Major 22-mosstep | M22ms | 17L + 5s | 1056.0 ¢ to 1073.7 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 17L + 6s | 1073.7 ¢ to 1104.0 ¢ |
Major 23-mosstep | M23ms | 18L + 5s | 1104.0 ¢ to 1136.8 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 18L + 6s | 1136.8 ¢ to 1152.0 ¢ |
Major 24-mosstep | M24ms | 19L + 5s | 1152.0 ¢ to 1200.0 ¢ | |
25-mosstep | Perfect 25-mosstep | P25ms | 19L + 6s | 1200.0 ¢ |
Scale tree
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |