77edo

Revision as of 23:21, 19 January 2024 by BudjarnLambeth (talk | contribs) (Intervals: Replaced manual table with template after ensuring no information would be lost or changed)
← 76edo 77edo 78edo →
Prime factorization 7 × 11
Step size 15.5844 ¢ 
Fifth 45\77 (701.299 ¢)
Semitones (A1:m2) 7:6 (109.1 ¢ : 93.51 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

With harmonic 3 less than a cent flat, harmonic 5 a bit over three cents sharp and 7's less flat than that, 77edo represents an excellent tuning choice for both valentine, the 31 & 46 temperament, and starling, the 126/125 planar temperament, giving the optimal patent val for 11-limit valentine and its 13-limit extensions dwynwen and valentino, as well as 11-limit starling and oxpecker temperaments. It also gives the optimal patent val for grackle and various members of the unicorn family, with a generator of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit alicorn and 11- and 13-limit camahueto.

77et tempers out 32805/32768 in the 5-limit, 126/125, 1029/1024 and 6144/6125 in the 7-limit, 121/120, 176/175, 385/384 and 441/440 in the 11-limit, and 196/195, 351/350, 352/351, 676/675 and 729/728 in the 13-limit.

77edo is an excellent edo for Carlos Alpha, since the difference between 5 steps of 77edo and 1 step of Carlos Alpha is only -0.042912 cents.

Prime harmonics

Approximation of prime harmonics in 77edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.66 +3.30 -2.59 -5.86 +1.03 +4.14 -1.41 -4.90 -1.01 -7.37
Relative (%) +0.0 -4.2 +21.2 -16.6 -37.6 +6.6 +26.5 -9.0 -31.4 -6.5 -47.3
Steps
(reduced)
77
(0)
122
(45)
179
(25)
216
(62)
266
(35)
285
(54)
315
(7)
327
(19)
348
(40)
374
(66)
381
(73)

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 15.6 ^D, ^^E♭♭
2 31.2 ^^D, ^3E♭♭
3 46.8 36/35, 37/36, 38/37, 39/38 ^3D, v3E♭
4 62.3 27/26, 28/27, 29/28 v3D♯, vvE♭
5 77.9 22/21, 23/22 vvD♯, vE♭
6 93.5 19/18, 37/35, 39/37 vD♯, E♭
7 109.1 16/15, 33/31 D♯, ^E♭
8 124.7 29/27 ^D♯, ^^E♭
9 140.3 13/12, 38/35 ^^D♯, ^3E♭
10 155.8 23/21, 35/32 ^3D♯, v3E
11 171.4 21/19, 32/29 v3D𝄪, vvE
12 187 29/26, 39/35 vvD𝄪, vE
13 202.6 9/8 E
14 218.2 17/15 ^E, ^^F♭
15 233.8 8/7 ^^E, ^3F♭
16 249.4 15/13, 37/32 ^3E, v3F
17 264.9 7/6 v3E♯, vvF
18 280.5 20/17, 27/23 vvE♯, vF
19 296.1 19/16, 32/27 F
20 311.7 ^F, ^^G♭♭
21 327.3 29/24, 35/29 ^^F, ^3G♭♭
22 342.9 28/23, 39/32 ^3F, v3G♭
23 358.4 16/13 v3F♯, vvG♭
24 374 36/29 vvF♯, vG♭
25 389.6 5/4 vF♯, G♭
26 405.2 24/19 F♯, ^G♭
27 420.8 14/11, 37/29 ^F♯, ^^G♭
28 436.4 9/7 ^^F♯, ^3G♭
29 451.9 13/10, 35/27 ^3F♯, v3G
30 467.5 17/13, 21/16, 38/29 v3F𝄪, vvG
31 483.1 37/28 vvF𝄪, vG
32 498.7 4/3 G
33 514.3 31/23, 35/26, 39/29 ^G, ^^A♭♭
34 529.9 19/14, 34/25 ^^G, ^3A♭♭
35 545.5 26/19, 37/27 ^3G, v3A♭
36 561 18/13, 29/21 v3G♯, vvA♭
37 576.6 39/28 vvG♯, vA♭
38 592.2 31/22, 38/27 vG♯, A♭
39 607.8 27/19, 37/26 G♯, ^A♭
40 623.4 33/23 ^G♯, ^^A♭
41 639 13/9 ^^G♯, ^3A♭
42 654.5 19/13, 35/24 ^3G♯, v3A
43 670.1 25/17, 28/19 v3G𝄪, vvA
44 685.7 vvG𝄪, vA
45 701.3 3/2 A
46 716.9 ^A, ^^B♭♭
47 732.5 26/17, 29/19, 32/21 ^^A, ^3B♭♭
48 748.1 20/13, 37/24 ^3A, v3B♭
49 763.6 14/9 v3A♯, vvB♭
50 779.2 11/7 vvA♯, vB♭
51 794.8 19/12 vA♯, B♭
52 810.4 8/5 A♯, ^B♭
53 826 29/18, 37/23 ^A♯, ^^B♭
54 841.6 13/8 ^^A♯, ^3B♭
55 857.1 23/14 ^3A♯, v3B
56 872.7 v3A𝄪, vvB
57 888.3 vvA𝄪, vB
58 903.9 27/16, 32/19 B
59 919.5 17/10 ^B, ^^C♭
60 935.1 12/7 ^^B, ^3C♭
61 950.6 26/15 ^3B, v3C
62 966.2 7/4 v3B♯, vvC
63 981.8 30/17, 37/21 vvB♯, vC
64 997.4 16/9 C
65 1013 ^C, ^^D♭♭
66 1028.6 29/16, 38/21 ^^C, ^3D♭♭
67 1044.2 ^3C, v3D♭
68 1059.7 24/13, 35/19 v3C♯, vvD♭
69 1075.3 vvC♯, vD♭
70 1090.9 15/8 vC♯, D♭
71 1106.5 36/19 C♯, ^D♭
72 1122.1 21/11 ^C♯, ^^D♭
73 1137.7 27/14 ^^C♯, ^3D♭
74 1153.2 35/18, 37/19, 39/20 ^3C♯, v3D
75 1168.8 v3C𝄪, vvD
76 1184.4 vvC𝄪, vD
77 1200 2/1 D

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-122 77 [77 122]] +0.207 0.207 1.33
2.3.5 32805/32768, 1594323/1562500 [77 122 179]] -0.336 0.785 5.04
2.3.5.7 126/125, 1029/1024, 10976/10935 [77 122 179 216]] -0.021 0.872 5.59
2.3.5.7.11 121/120, 126/125, 176/175, 10976/10935 [77 122 179 216 266]] +0.322 1.039 6.66
2.3.5.7.11.13 121/120, 126/125, 176/175, 196/195, 676/675 [77 122 179 216 266 285]] +0.222 0.974 6.25

Rank-2 temperaments

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated Ratio
(Reduced)
Temperaments
1 4\77 62.34 28/27 Unicorn / alicorn / camahueto / qilin
1 5\77 77.92 21/20 Valentine
1 9\77 140.26 13/12 Tsaharuk
1 15\77 233.77 8/7 Guiron
1 16\77 249.35 15/13 Hemischis (77e)
1 20\77 311.69 6/5 Oolong
1 23\77 358.44 16/13 Restles
1 31\77 483.12 45/34 Hemiseven
1 32\77 498.70 4/3 Grackle
1 34\77 529.87 512/375 Tuskaloosa
Muscogee
7 32\77
(1\77)
498.70
(15.58)
4/3
(81/80)
Absurdity
11 32\77
(3\77)
498.70
(46.75)
4/3
(36/35)
Hendecatonic

Music

Jake Freivald
Joel Grant Taylor
Chris Vaisvil