400edo

Revision as of 00:37, 5 June 2023 by Eliora (talk | contribs) (Theory: now gregorian calendar temps have their own pages, also do some correction and add monzismic[29] since music was made in it)
← 399edo 400edo 401edo →
Prime factorization 24 × 52
Step size 3 ¢ 
Fifth 234\400 (702 ¢) (→ 117\200)
Semitones (A1:m2) 38:30 (114 ¢ : 90 ¢)
Consistency limit 21
Distinct consistency limit 21

The 400 equal divisions of the octave (400edo), or the 400(-tone) equal temperament (400tet, 400et) when viewed from a regular temperament perspective, is the equal division of the octave into 400 parts of exact 3 cents each.

Theory

400edo is consistent in the 21-odd-limit. It tempers out the unidecma, [-7 22 -12, and the qintosec comma, [47 -15 -10, in the 5-limit; 2401/2400, 1959552/1953125, and 14348907/14336000 in the 7-limit; 5632/5625, 9801/9800, 117649/117612, and 131072/130977 in the 11-limit; 676/675, 1001/1000, 1716/1715, 2080/2079, 4096/4095, 4225/4224 and 39366/39325 in the 13-limit, supporting the decoid temperament and the quinmite temperament. It tempers out 936/935, 1156/1155, 2058/2057, 2601/2600, 4914/4913 and 24576/24565 in the 17-limit, and 969/968, 1216/1215, 1521/1520, and 1729/1728 in the 19-limit.

Prime harmonics

Approximation of prime harmonics in 400edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41
Error Absolute (¢) +0.00 +0.04 +0.69 +0.17 +0.68 -0.53 +0.04 -0.51 -1.27 -0.58 +0.96 +0.66 -0.06
Relative (%) +0.0 +1.5 +22.9 +5.8 +22.7 -17.6 +1.5 -17.1 -42.5 -19.2 +32.1 +21.9 -2.1
Steps
(reduced)
400
(0)
634
(234)
929
(129)
1123
(323)
1384
(184)
1480
(280)
1635
(35)
1699
(99)
1809
(209)
1943
(343)
1982
(382)
2084
(84)
2143
(143)

Subsets and supersets

400 factors into 24 × 52, with subset edos 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, and 200. Notably, 200edo contains a semiconvergent approximation to 3/2.

Selected intervals

Step Eliora's Naming System Associated ratio
0 unison 1/1
28 5/12-meantone semitone 6561/6250
33 small septendecimal semitone 18/17, 55/52
35 septendecimal semitone 17/16
37 diatonic semitone 16/15
99 undevicesimal minor third 19/16
100 symmetric minor third
200 symmetric tritone 99/70, 140/99
231 Gregorian leap week fifth 525/352, 3/2 / (81/80)^(5/12)
234 perfect fifth 3/2
323 harmonic seventh 7/4
372 5/12-meantone seventh 12500/6561
400 octave 2/1

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [-7 22 -12, [47 -15 -10 [400 634 929]] -0.1080 0.1331 4.44
2.3.5.7 2401/2400, 1959552/1953125, 14348907/14336000 [400 634 929 1123]] -0.0965 0.1170 3.90
2.3.5.7.11 2401/2400, 5632/5625, 9801/9800, 46656/46585 [400 634 929 1123 1384]] -0.1166 0.1121 3.74
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 4096/4095, 39366/39325 [400 634 929 1123 1384 1480]] -0.0734 0.1407 4.69
2.3.5.7.11.13.17 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 4096/4095 [400 634 929 1123 1384 1480 1635]] -0.0645 0.1321 4.40
2.3.5.7.11.13.17.19 676/675, 936/935, 969/968, 1001/1000, 1156/1155, 1216/1215, 1716/1715 [400 634 929 1123 1384 1480 1635 1699]] -0.0413 0.1380 4.60

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 83\400 249.00 [-26 18 -1 Monzismic
1 33\400 99.00 18/17 Gregorian leap day
1 101\400 303.00 25/21 Quinmite
1 153\400 459.00 125/96 Majvamic
1 169\400 507.00 525/352 Gregorian leap week
2 61\400 183.00 10/9 Unidecmic
5 123\400
(37\400)
369.00
(111.00)
10125/8192
(16/15)
Qintosec (5-limit)
10 83\400
(3\400)
249.00
(9.00)
15/13
(176/175)
Decoid
80 166\400
(1\400)
498.00
(3.00)
4/3
(245/243)
Octogintic

Scales

Music