453edo

From Xenharmonic Wiki
Revision as of 04:06, 16 June 2023 by FloraC (talk | contribs) (Cleanup; +prime error table; +subsets and supersets)
Jump to navigation Jump to search
← 452edo 453edo 454edo →
Prime factorization 3 × 151
Step size 2.64901 ¢ 
Fifth 265\453 (701.987 ¢)
Semitones (A1:m2) 43:34 (113.9 ¢ : 90.07 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

The equal temperament tempers out 1224440064/1220703125 (parakleisma) and [54 -37 2 (monzisma) in the 5-limit; 250047/250000, 589824/588245, and 2460375/2458624 in the 7-limit; 3025/3024, 5632/5625, 24057/24010, and 102487/102400 in the 11-limit; 676/675, 1001/1000, 4096/4095, 6656/6655, and 16848/16807 in the 13-limit, so that it supports the monzismic temperament.

Prime harmonics

Approximation of prime harmonics in 453edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.03 +0.44 +0.71 -0.32 -0.79 +1.00 -0.82 -0.46 +0.89 -0.66
Relative (%) +0.0 +1.2 +16.7 +26.8 -12.3 -29.9 +37.9 -31.1 -17.4 +33.5 -25.1
Steps
(reduced)
453
(0)
718
(265)
1052
(146)
1272
(366)
1567
(208)
1676
(317)
1852
(40)
1924
(112)
2049
(237)
2201
(389)
2244
(432)

Subsets and supersets

453edo has subset edos 3 and 151.