1L 1s

From Xenharmonic Wiki
Jump to navigation Jump to search
1L 1s 2L 1s →
↓ 1L 2s 2L 2s ↘
┌╥┬┐
│║││
││││
└┴┴┘
Scale structure
Step pattern Ls
sL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 1\2 to 1\1 (600.0 ¢ to 1200.0 ¢)
Dark 0\1 to 1\2 (0.0 ¢ to 600.0 ¢)
TAMNAMS information
Name monowood
Prefix monwd-
Abbrev. w
Related MOS scales
Parent none
Sister 1L 1s (self)
Daughters 2L 1s, 1L 2s
Neutralized 2edo
2-Flought 3L 1s, 1L 3s
Equal tunings
Equalized (L:s = 1:1) 1\2 (600.0 ¢)
Supersoft (L:s = 4:3) 4\7 (685.7 ¢)
Soft (L:s = 3:2) 3\5 (720.0 ¢)
Semisoft (L:s = 5:3) 5\8 (750.0 ¢)
Basic (L:s = 2:1) 2\3 (800.0 ¢)
Semihard (L:s = 5:2) 5\7 (857.1 ¢)
Hard (L:s = 3:1) 3\4 (900.0 ¢)
Superhard (L:s = 4:1) 4\5 (960.0 ¢)
Collapsed (L:s = 1:0) 1\1 (1200.0 ¢)

1L 1s is the simplest valid MOS pattern, often referred to as the trivial MOS scale.

Names

TAMNAMS uses two names for this mos: trivial and monowood. The name "trivial" references how this is the simplest possible mos pattern and is used to refer to this mos with any period, and the name "monowood" is an extension of the other n-wood names (such as biwood, triwood, and tetrawood), named after blackwood and whitewood) and specifically refers to this mos with an octave period.

Modes and intervals

Mode UDP Mode name Rotational order mosunison 1-mosstep mosoctave
Ls 1|0 1L 1s 1| 0 0 (perfect) L (major) L+s (perfect)
sL 0|1 1L 1s 0| 1 0 (perfect) s (minor) L+s (perfect)

Properties

All single-period mosses ultimately start with a generating interval and, for octave-equivalent scales, the generator's octave complement. Hence, this scale can also be seen as the parent of every moment-of-symmetry scale and is thus found as the root of various scale trees, such as the mos family tree.

This mos is also its own sister, though this property is also true of all nL ns scales.

Stacking a generating interval, or one of its two sizes of mossteps, just once produces this mos's daughter mosses of 2L 1s and 1L 2s.

Scale tree

As the mos 1L 1s is related to all single-period mosses, the scale tree depicted shows how more familiar mosses are related, rather than related temperaments.

Generator Bright gen. Dark gen. L s L/s Selected basic mosses Other comments
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 Basic balzano (2L 7s)
5\9 666.667 533.333 5 4 1.250 Basic antidiatonic (2L 5s)
9\16 675.000 525.000 9 7 1.286 Basic armotonic (7L 2s)
4\7 685.714 514.286 4 3 1.333
11\19 694.737 505.263 11 8 1.375
7\12 700.000 500.000 7 5 1.400 Basic diatonic (5L 2s)
10\17 705.882 494.118 10 7 1.429
3\5 720.000 480.000 3 2 1.500
11\18 733.333 466.667 11 7 1.571
8\13 738.462 461.538 8 5 1.600 Basic oneirotonic (5L 3s)
13\21 742.857 457.143 13 8 1.625
5\8 750.000 450.000 5 3 1.667
12\19 757.895 442.105 12 7 1.714
7\11 763.636 436.364 7 4 1.750 Basic checkertonic (3L 5s)
9\14 771.429 428.571 9 5 1.800
2\3 800.000 400.000 2 1 2.000 2L 1s and 1L 2s separate here.
9\13 830.769 369.231 9 4 2.250 Basic sephiroid (3L 7s)
7\10 840.000 360.000 7 3 2.333 Basic mosh (3L 4s)
12\17 847.059 352.941 12 5 2.400 Basic zaltertic (7L 3s)
5\7 857.143 342.857 5 2 2.500
13\18 866.667 333.333 13 5 2.600
8\11 872.727 327.273 8 3 2.667 Basic smitonic (4L 3s)
11\15 880.000 320.000 11 4 2.750
3\4 900.000 300.000 3 1 3.000
10\13 923.077 276.923 10 3 3.333 Basic gramitonic (4L 5s)
7\9 933.333 266.667 7 2 3.500 Basic manual (4L 1s)
11\14 942.857 257.143 11 3 3.667 Basic semiquartal (5L 4s)
4\5 960.000 240.000 4 1 4.000
9\11 981.818 218.182 9 2 4.500 Basic machinoid (5L 1s)
5\6 1000.000 200.000 5 1 5.000 Basic pedal (1L 4s)
6\7 1028.571 171.429 6 1 6.000 Basic antimachinoid (1L 5s)
1\1 1200.000 0.000 1 0 → inf