Lumatone mapping for 51edo

From Xenharmonic Wiki
Revision as of 15:21, 23 March 2025 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search

There are many conceivable ways to map 51edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.

Antidiatonic

You can use the b val, which can be interpreted as either mavila or undecimation, but is not a particularly great tuning for either.

33
40
41
48
4
11
18
42
49
5
12
19
26
33
40
50
6
13
20
27
34
41
48
4
11
18
0
7
14
21
28
35
42
49
5
12
19
26
33
40
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
4
11
18
25
32
39
46
2
9
16
23
30
37
44
33
40
47
3
10
17
24
31
38
45
1
4
11
18
25
32
39
46
2
33
40
47
3
10
4
11

Slendric

Instead, it is probably better to use one of the mappings that reaches the perfect 5th in three generator steps. Of these, the Slendric mapping has the greater range.

24
34
25
35
45
4
14
16
26
36
46
5
15
25
35
17
27
37
47
6
16
26
36
46
5
15
8
18
28
38
48
7
17
27
37
47
6
16
26
36
9
19
29
39
49
8
18
28
38
48
7
17
27
37
47
6
16
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
27
37
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
5
15
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
26
36
46
5
15
25
35
45
4
14
24
34
44
3
6
16
26
36
46
5
15
25
35
45
4
27
37
47
6
16
26
36
46
7
17
27
37
47
28
38

Porcupine

However, the Porky mapping is probably more intuitive to people used to using a heptatonic scale and simple 5-limit ratios in chords.

18
25
27
34
41
48
4
29
36
43
50
6
13
20
27
38
45
1
8
15
22
29
36
43
50
6
40
47
3
10
17
24
31
38
45
1
8
15
22
29
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
3
10
17
24
31
38
45
1
8
15
22
29
36
43
33
40
47
3
10
17
24
31
38
45
1
5
12
19
26
33
40
47
3
35
42
49
5
12
7
14


ViewTalkEditLumatone mappings 
48edo49edo50edoLumatone mapping for 51edo52edo53edo54edo