Diminished family

Revision as of 14:40, 17 July 2024 by Fredg999 (talk | contribs) (Undo revision 148047 by Fredg999 (talk) Keep DKW on this page for now, since there is no dedicated page)

The dimipent family tempers out the major diesis aka diminished comma, 648/625, the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as 12edo.

Dimipent

Subgroup: 2.3.5

Comma list: 648/625

Mapping[4 0 3], 0 1 1]]

Optimal tunings:

  • POTE: ~6/5 = 1\4, ~3/2 = 699.507
  • DKW: ~6/5 = 1\4, ~3/2 = 690.29

Optimal ET sequence4, 8, 12

Badness: 0.047231

Diminished

Subgroup: 2.3.5.7

Comma list: 36/35, 50/49

Mapping[4 0 3 5], 0 1 1 1]]

Wedgie⟨⟨ 4 4 4 -3 -5 -2 ]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 699.523

Optimal ET sequence4, 8d, 12

Badness: 0.022401

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 56/55

Mapping: [4 0 3 5 14], 0 1 1 1 0]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 709.109

Optimal ET sequence4, 8d, 12, 32cddee, 44cddeee

Badness: 0.022132

Scales: diminished12

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 40/39, 50/49, 66/65

Mapping: [4 0 3 5 14 15], 0 1 1 1 0 0]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 713.773

Optimal ET sequence4, 8d, 12f, 20cdef

Badness: 0.019509

Scales: diminished12

Demolished

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 50/49

Mapping: [4 0 3 5 -5], 0 1 1 1 3]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 689.881

Optimal ET sequence12, 28, 40de

Badness: 0.026574

Cohedim

This temperament has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e & 24 and 13-limit 4ef & 24. For 11-limit 8bce & 12 temperament, cohedim arguably makes more sense.

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 125/121

Mapping: [4 1 4 6 6], 0 2 2 2 3]]

Mapping generators: ~6/5, ~11/7

Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 101.679

Optimal ET sequence8bce, 12

Badness: 0.054965

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 50/49, 66/65, 125/121

Mapping: [4 1 4 6 6 7], 0 2 2 2 3 3]]

Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 102.299

Optimal ET sequence8bcef, 12f

Badness: 0.041707

Hemidim

Subgroup: 2.3.5.7

Comma list: 49/48, 648/625

Mapping[4 0 3 8], 0 2 2 1]]

Wedgie⟨⟨ 8 8 4 -6 -16 -13 ]]

Optimal tuning (POTE): ~6/5 = 1\4, ~7/6 = 252.555

Optimal ET sequence4, 20c, 24, 52d, 76cdd

Badness: 0.086378

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 243/242

Mapping: [4 0 3 8 -2], 0 2 2 1 5]]

Optimal tuning (POTE): ~6/5 = 1\4, ~7/6 = 251.658

Optimal ET sequence4e, 20ce, 24, 76cdde

Badness: 0.056576

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 243/242

Mapping: [4 0 3 8 -2 -1], 0 2 2 1 5 5]]

Optimal tuning (POTE): ~6/5 = 1\4, ~7/6 = 252.225

Optimal ET sequence4ef, 20cef, 24, 52de, 76cdde

Badness: 0.039030

Semidim

Subgroup: 2.3.5.7

Comma list: 245/243, 392/375

Mapping[8 0 6 -3], 0 1 1 2]]

Wedgie⟨⟨ 8 8 16 -6 3 15 ]]

Optimal tuning (POTE): ~15/14 = 1\8, ~3/2 = 707.014

Optimal ET sequence8d, 24, 32c, 56c

Badness: 0.107523

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 245/243

Mapping: [8 0 6 -3 15], 0 1 1 2 1]]

Optimal tuning (POTE): ~12/11 = 1\8, ~3/2 = 706.645

Optimal ET sequence8d, 24, 32c, 56c

Badness: 0.047598

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 66/65, 77/75, 507/500

Mapping: [8 0 6 -3 15 17], 0 1 1 2 1 1]]

Optimal tuning (POTE): ~12/11 = 1\8, ~3/2 = 707.376

Optimal ET sequence8d, 24, 32cf, 56cf

Badness: 0.030597