User:FloraC/Sandbox
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
- mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 4 10 4 13 12 ]]
Optimal tuning (CTE): ~3/2 = 696.9521
Optimal ET sequence: 12, 19, 31, 81, 112b, 143b
Badness: 0.0137
5-limit rank-2 temperaments by TE simple badness
Breed's simple badness.
Junk temperaments
High-badness temperaments
Temperament | Complexity | Error (¢) | Badness (moct) | Mapping | Comma list |
---|---|---|---|---|---|
Yo | .367 | 26.0 | 7.95 | [⟨1 0 -1], ⟨0 1 -2]] | 10/9 |
Antitonic | .395 | 27.0 | 8.89 | [⟨2 3 0], ⟨0 0 1]] | 9/8 |
Father | .443 | 13.2 | 4.87 | [⟨1 0 4], ⟨0 1 -1]] | 16/15 |
Bug | .602 | 11.6 | 5.81 | [⟨1 0 0], ⟨0 2 3]] | 27/25 |
Supersharp | 1.06 | 7.94 | 7.01 | [⟨2 0 -5], ⟨0 1 3]] | 800/729 |
Laconic | 1.24 | 6.52 | 6.74 | [⟨1 1 1], ⟨0 3 7]] | 2187/2000 |
Lafayette | 1.30 | 7.00 | 7.60 | [⟨1 1 2], ⟨0 5 3]] | 3456/3125 |
Symbolic | 1.31 | 6.09 | 6.66 | [⟨1 3 4], ⟨0 -5 -6]] | 2048/1875 |
Sixix | 1.37 | 4.57 | 5.22 | [⟨1 3 2], ⟨0 -4 1]] | 3125/2916 |
Uncle | 1.40 | 7.53 | 8.80 | [⟨1 0 12], ⟨0 1 -6]] | 4096/3645 |
Whitewood | 1.42 | 4.20 | 4.95 | [⟨7 11 0], ⟨0 0 1]] | 2187/2048 |
1.66 | 4.13 | 5.72 | [⟨1 0 5], ⟨0 3 -5]] | 32768/30375 |
Main sequence
Temperament | Complexity | Error (¢) | Badness (moct) | Mapping | Comma list |
---|---|---|---|---|---|
Dicot | .521 | 7.09 | 3.08 | [⟨1 1 2], ⟨0 2 1]] | 25/24 |
Meantone | .711 | 1.58 | .937 | [⟨1 0 -4], ⟨0 1 4]] | 81/80 |
Mavila | .795 | 6.06 | 4.02 | [⟨1 0 7], ⟨0 1 -3]] | 135/128 |
Augmented | .894 | 2.40 | 1.79 | [⟨3 0 7], ⟨0 1 0]] | 128/125 |
Porcupine | .960 | 2.68 | 2.14 | [⟨1 2 3], ⟨0 -3 -5]] | 250/243 |
Blackwood | 1.02 | 4.63 | 3.93 | [⟨5 8 0], ⟨0 0 1]] | 256/243 |
Diminished | 1.05 | 3.10 | 2.73 | [⟨4 0 3], ⟨0 1 1]] | 648/625 |
Srutal | 1.22 | .835 | .852 | [⟨2 0 11], ⟨0 1 -2]] | 2048/2025 |
Magic | 1.40 | 1.11 | 1.29 | [⟨1 0 2], ⟨0 5 1]] | 3125/3072 |
Hanson | 1.55 | .274 | .353 | [⟨1 0 1], ⟨0 6 5]] | 15625/15552 |
Ripple | 1.56 | 2.82 | 3.66 | [⟨1 2 3], ⟨0 -5 -8]] | 6561/6250 |
Negri | 1.58 | 1.69 | 2.23 | [⟨1 2 2], ⟨0 -4 3]] | 16875/16384 |
Tetracot | 1.61 | .900 | 1.21 | [⟨1 1 1], ⟨0 4 9]] | 20000/19683 |
Superpyth | 1.70 | 2.11 | 2.99 | [⟨1 0 -12], ⟨0 1 9]] | 20480/19683 |
Helmholtz | 1.79 | .0570 | .0851 | [⟨1 0 15], ⟨0 1 -8]] | 32805/32768 |
Wesley | 1.91 | 2.75 | 4.37 | [⟨1 4 3], ⟨0 -7 -2]] | 78125/73728 |
Sensipent | 1.97 | .356 | .584 | [⟨1 6 8], ⟨0 7 9]] | 78732/78125 |
Stump | 2.02 | 1.88 | 3.16 | [⟨1 0 6], ⟨0 3 -7]] | 273375/262144 |
Passion | 2.02 | 1.57 | 2.64 | [⟨1 2 2], ⟨0 -5 4]] | 262144/253125 |
Doublewide | 2.06 | 2.00 | 3.43 | [⟨2 1 3], ⟨0 4 3]] | 390625/373248 |
Würschmidt | 2.29 | .262 | .499 | [⟨1 7 3], ⟨0 8 1]] | 393216/390625 |
Amity | 2.29 | .140 | .268 | [⟨1 3 6], ⟨0 -5 -13]] | 1600000/1594323 |
Valentine | 2.34 | .736 | 1.44 | [⟨1 1 2], ⟨0 9 5]] | 1990656/1953125 |
Immunity | 2.40 | 1.03 | 2.06 | [⟨1 0 -8], ⟨0 2 13]] | 1638400/1594323 |
Shibboleth | 2.42 | 1.24 | 2.50 | [⟨1 4 5], ⟨0 -9 -10]] | 1953125/1889568 |
Compton | 2.44 | .504 | 1.02 | [⟨12 19 0], ⟨0 0 1]] | 531441/524288 |
Orson | 2.44 | .215 | .438 | [⟨1 0 3], ⟨0 7 -3]] | 2109375/2097152 |
Unicorn | 2.52 | .725 | 1.52 | [⟨1 2 3], ⟨0 -8 -13]] | 1594323/1562500 |
Mynic | 2.60 | 1.10 | 2.37 | [⟨1 9 9], ⟨0 -10 -9]] | 10077696/9765625 |
Ampersand | 2.78 | .594 | 1.38 | [⟨1 1 3], ⟨0 6 -7]] | 34171875/33554432 |
Fifive | 2.91 | .643 | 1.56 | [⟨2 2 3], ⟨0 5 7]] | 9765625/9565938 |
Misty | 2.99 | .308 | .767 | [⟨3 0 26], ⟨0 1 -4]] | 67108864/66430125 |
Gravity | 2.99 | .269 | .669 | [⟨1 5 12], ⟨0 -6 -17]] | 129140163/128000000 |
Rodan | 3.10 | .433 | 1.12 | [⟨1 1 -1], ⟨0 3 17]] | [20 -17 3⟩ |
3.11 | .757 | 1.96 | [⟨1 0 -23], ⟨0 1 16]] | [-23 16 -1⟩ | |
Mabila | 3.32 | .488 | 1.35 | [⟨1 6 1], ⟨0 -10 3]] | [28 -3 -10⟩ |
Parakleismic | 3.47 | .0798 | .231 | [⟨1 5 6], ⟨0 -13 -14]] | [8 14 -13⟩ |
Quartonic | 3.48 | .214 | .621 | [⟨1 2 3], ⟨0 -11 -18]] | [3 -18 11⟩ |
Escapade | 3.60 | .138 | .414 | [⟨1 2 2], ⟨0 -9 7]] | [32 -7 -9⟩ |
Ditonic | 3.68 | .258 | .792 | [⟨1 6 3], ⟨0 -13 -2]] | [-27 -2 13⟩ |
Vishnuzmic | 3.71 | .0471 | .145 | [⟨2 4 5], ⟨0 -7 -3]] | [23 6 -14⟩ |
Vulture | 3.81 | .0576 | .183 | [⟨1 0 -6], ⟨0 4 21]] | [24 -21 4⟩ |
Trisedodge | 3.87 | .336 | 1.08 | [⟨5 1 7], ⟨0 3 2]] | [19 10 -15⟩ |
4.00 | .157 | .524 | [⟨1 4 -1], ⟨0 -8 11]] | [-36 11 8⟩ |
Tunings to be reviewed
Weight-skew\Order | Chebyshevian | Euclidean | Manhattan |
---|---|---|---|
Tenney | CTC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CTE ~3/2 = 697.2143¢ |
CTOP ~3/2 = 698.0197¢ |
Tenney-Weil | CTWC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CTWE ~3/2 = 696.6512¢ |
CTWOP ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
Equilateral | CEC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CEE ~3/2 = 696.8947¢ Eigenmonzo basis: 2.1875 (4/17-comma tuning) |
CEOP ~3/2 = 697.6537¢ Eigenmonzo basis: 2.15 (1/5-comma tuning) |
Equilateral-Weil | CEWC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CEWE ~3/2 = 696.4534¢ Eigenmonzo basis: 2.48828125/3 (11/43-comma tuning) |
CEWOP ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
Benedetti | CBC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CBE ~3/2 = 697.3738¢ Eigenmonzo basis: 2.[0 25 36⟩ (36/169-comma tuning) |
CBOP ~3/2 = 698.1598¢ Eigenmonzo basis: 2.30375 (3/17-comma tuning) |
Benedetti-Weil | CBWC ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
CBWE ~3/2 = 696.7868¢ Eigenmonzo basis: 2.[0 5 31⟩ (31/129-comma tuning) |
CBWOP ~3/2 = 696.5784¢ Eigenmonzo basis: 2.5 (1/4-comma tuning) |
Weight-skew\Order | Chebyshevian | Euclidean | Manhattan |
---|---|---|---|
Tenney | CTC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CTE ~3/2 = 696.9521¢ |
CTOP ~3/2 = 696.6458¢ |
Tenney-Weil | CTWC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CTWE ~3/2 = 696.6562¢ |
CTWOP ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
Equilateral | CEC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CEE ~3/2 = 696.8843¢ Eigenmonzo basis: 2.[0 1 4 10⟩ |
CEOP ~3/2 = 697.3437¢ Eigenmonzo basis: 2.21 |
Equilateral-Weil | CEWC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CEWE ~3/2 = 696.7248¢ Eigenmonzo basis: 2.4117715/9 |
CEWOP ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
Benedetti | CBC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CBE ~3/2 = 697.0147¢ Eigenmonzo basis: 2.[0 1225 1764 2250⟩ |
CBOP ~3/2 = 697.8422¢ Eigenmonzo basis: 2.750141 |
Benedetti-Weil | CBWC ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
CBWE ~3/2 = 696.6306¢ Eigenmonzo basis: 2.[0 -3290 3171 7215⟩ |
CBWOP ~3/2 = 696.8826¢ Eigenmonzo basis: 2.7 |
Temperament pages
Note:
- Order: subgroup, comma list, (sval) mapping, (sval) mapping generators, gencom mapping, gencom, lattice basis, wedgie, optimal tuning (CTE), minimax tuning, tuning ranges, algebraic generator, Optimal ET sequence, badness, complexity spectrum, and others.
- Comma list should show the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Since minimax tunings are based on tonality diamond, it should explicitly state the odd limit, or a diamond function of ratios.
- For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (sic), simply show "CTE", otherwise show "subgroup CTE" or "inharmonic CTE" instead.
Get a family for:
Ripple (3 different 7-limit extensions)doneSmate (2 different 7-limit extensions)donePassion (4 different 7-limit extensions, 3 strong and 1 weak)doneUndimdoneQuintaleapdoneQuindromedadone- Parakleismic (many reasonable but unnamed 7-limit extensions)
- Schismatic rank three family (perhaps)
Who's next?
Meantone familyDidymus rank three familyArchytas clanArchytas familyFather familyTrienstonic clanSeptisemi temperamentsSlendro clanSemiphore familyJubilismic clanJubilismic familyMint temperamentsMint familyRipple familySmate familyAugmented familyDimipent familyDicot familyBug familyPelogic familyMarvel temperamentsMarvel familyGamelismic clanGamelismic familyStarling temperamentsStarling familySensamagic clanSensamagic familyMagic familySensipent familyKeemic temperamentsKeemic familySengic familySchismatic familyKleismic familyKleismic rank three family- Hemimean clan
Hemimean family- Würschmidt family
Unicorn familyShibboleth familyImmunity familyFifive familyTrisedodge familyQuintosec familyPental familySycamore familySemicomma familyOrwellismic temperamentsOrwellismic familyHemimage temperamentsHemimage familyPorwell temperamentsPorwell familyHemifamity temperamentsHemifamity familyPorcupine familyPorcupine rank three familyTetracot familyDiaschismic familyDiaschismic rank three familyCompton familyAmity familyMisty familyUndim familyLehmerismic temperamentsKalismic temperaments- Ragismic microtemperaments
Ragismic familyLandscape microtemperamentsLandscape familyDimcomp family- Mirkwai clan
Mirkwai family- Breedsmic temperaments
Breed familyEscapade familyGravity familyCataharry temperamentsCataharry familyVarunismic temperamentsRastmic rank three clanBiyatismic clan- Ptolemismic clan
Valinorsmic clanPentacircle clanKeenanismic temperamentsWerckismic temperamentsSwetismic temperamentsWizmic microtemperamentsMetric microtemperamentsHorwell temperamentsHorwell familyLuna familyVulture familyTricot familyMinortonic familyGammic familyGarischismic clanCanousmic temperamentsCanou familySemicanousmic clanSemiporwellismic clanOlympic clanAlphaxenic rank three clan- Mirwomo temperaments
- Gariboh clan
- Gariboh family
- Octagar temperaments
- Octagar family
- Wesley family
- Greenwoodmic temperaments
- Avicennmic temperaments
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-49 31⟩ | [⟨31 49]] | +1.63 | 1.64 | 4.22 |
2.3.5 | 81/80, 393216/390625 | [⟨31 49 72]] | +0.98 | 1.63 | 4.20 |
2.3.5.7 | 81/80, 126/125, 1029/1024 | [⟨31 49 72 87]] | +0.83 | 1.43 | 3.70 |
2.3.5.7.11 | 81/80, 99/98, 121/120, 126/125 | [⟨31 49 72 87 107]] | +1.21 | 1.49 | 3.84 |
Scale tree
- 7-tone
1L 6s,2L 5s,3L 4s,4L 3s,5L 2s,6L 1s
(Bounded by branch depth = 7)
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4\7 | 685.714 | 1 | 1 | 1.000 | |||||||
27\47 | 689.362 | 7 | 6 | 1.167 | |||||||
23\40 | 690.000 | 6 | 5 | 1.200 | |||||||
42\73 | 690.411 | 11 | 9 | 1.222 | |||||||
19\33 | 690.909 | 5 | 4 | 1.250 | |||||||
53\92 | 691.304 | 14 | 11 | 1.273 | |||||||
34\59 | 691.525 | 9 | 7 | 1.286 | |||||||
49\85 | 691.765 | 13 | 10 | 1.300 | |||||||
15\26 | 692.308 | 4 | 3 | 1.333 | |||||||
56\97 | 692.784 | 15 | 11 | 1.364 | |||||||
41\71 | 692.958 | 11 | 8 | 1.375 | |||||||
67\116 | 693.103 | 18 | 13 | 1.385 | |||||||
26\45 | 693.333 | 7 | 5 | 1.400 | |||||||
63\109 | 693.578 | 17 | 12 | 1.417 | |||||||
37\64 | 693.750 | 10 | 7 | 1.429 | |||||||
48\83 | 693.976 | 13 | 9 | 1.444 | |||||||
11\19 | 694.737 | 3 | 2 | 1.500 | L/s = 3/2 | ||||||
51\88 | 695.455 | 14 | 9 | 1.556 | |||||||
40\69 | 695.652 | 11 | 7 | 1.571 | |||||||
69\119 | 695.798 | 19 | 12 | 1.583 | |||||||
29\50 | 696.000 | 8 | 5 | 1.600 | |||||||
66\131 | 696.183 | 21 | 13 | 1.615 | Golden meantone | ||||||
47\81 | 696.296 | 13 | 8 | 1.625 | |||||||
65\112 | 696.429 | 18 | 11 | 1.636 | |||||||
18\31 | 696.774 | 5 | 3 | 1.667 | Meantone is in this region | ||||||
61\105 | 697.143 | 17 | 10 | 1.700 | |||||||
43\74 | 697.297 | 12 | 7 | 1.714 | |||||||
68\117 | 697.436 | 19 | 11 | 1.727 | |||||||
25\43 | 697.674 | 7 | 4 | 1.750 | |||||||
57\98 | 697.959 | 16 | 9 | 1.778 | |||||||
32\55 | 698.182 | 9 | 5 | 1.800 | |||||||
39\67 | 698.507 | 11 | 6 | 1.833 | |||||||
7\12 | 700.000 | 2 | 1 | 2.000 | Basic diatonic (Generators smaller than this are proper) | ||||||
38\65 | 701.539 | 11 | 5 | 2.200 | |||||||
31\53 | 701.887 | 9 | 4 | 2.250 | |||||||
55\94 | 702.128 | 16 | 7 | 2.286 | |||||||
24\41 | 702.409 | 7 | 3 | 2.333 | |||||||
65\111 | 702.703 | 19 | 8 | 2.375 | |||||||
41\70 | 702.857 | 12 | 5 | 2.400 | |||||||
58\99 | 703.030 | 17 | 7 | 2.428 | |||||||
17\29 | 703.448 | 5 | 2 | 2.500 | |||||||
61\104 | 703.846 | 18 | 7 | 2.571 | |||||||
44\75 | 704.000 | 13 | 5 | 2.600 | |||||||
71\121 | 704.132 | 21 | 8 | 2.625 | Golden neogothic | ||||||
27\46 | 704.348 | 8 | 3 | 2.667 | |||||||
64\109 | 704.587 | 19 | 7 | 2.714 | |||||||
37\63 | 704.762 | 11 | 4 | 2.750 | |||||||
47\80 | 705.000 | 14 | 5 | 2.800 | |||||||
10\17 | 705.882 | 3 | 1 | 3.000 | L/s = 3/1 | ||||||
43\73 | 706.849 | 13 | 4 | 3.250 | |||||||
33\56 | 707.143 | 10 | 3 | 3.333 | |||||||
56\95 | 707.368 | 17 | 5 | 3.400 | |||||||
23\39 | 707.692 | 7 | 2 | 3.500 | |||||||
59\100 | 708.000 | 18 | 5 | 3.600 | |||||||
36\61 | 708.197 | 11 | 3 | 3.667 | |||||||
49\83 | 708.434 | 15 | 4 | 3.750 | |||||||
13\22 | 709.091 | 4 | 1 | 4.000 | Archy is in this region | ||||||
42\71 | 709.859 | 13 | 3 | 4.333 | |||||||
29\49 | 710.204 | 9 | 2 | 4.500 | |||||||
45\76 | 710.526 | 14 | 3 | 4.667 | |||||||
16\27 | 711.111 | 5 | 1 | 5.000 | |||||||
35\59 | 711.864 | 11 | 2 | 5.500 | |||||||
19\32 | 712.500 | 6 | 1 | 6.000 | |||||||
22\37 | 713.514 | 7 | 1 | 7.000 | |||||||
3\5 | 720.000 | 1 | 0 | → inf |