6L 25s
↖ 5L 24s | ↑ 6L 24s | 7L 24s ↗ |
← 5L 25s | 6L 25s | 7L 25s → |
↙ 5L 26s | ↓ 6L 26s | 7L 26s ↘ |
┌╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬┬┐ │║││││║││││║││││║││││║││││║││││││ │││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sssssLssssLssssLssssLssssLssssL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
6L 25s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 25 small steps, repeating every octave. 6L 25s is related to 6L 1s, expanding it by 24 tones. Generators that produce this scale range from 193.5 ¢ to 200 ¢, or from 1000 ¢ to 1006.5 ¢.
Soft-to-basic tunings are associated with hemiwurschmidt temperament, being its 31-note MOS, while basic-to-parahard tunings are associated with sharp didacus extensions, namely roulette.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 38.7 ¢ |
Major 1-mosstep | M1ms | L | 38.7 ¢ to 200.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 77.4 ¢ |
Major 2-mosstep | M2ms | L + s | 77.4 ¢ to 200.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0 ¢ to 116.1 ¢ |
Major 3-mosstep | M3ms | L + 2s | 116.1 ¢ to 200.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0 ¢ to 154.8 ¢ |
Major 4-mosstep | M4ms | L + 3s | 154.8 ¢ to 200.0 ¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 5s | 0.0 ¢ to 193.5 ¢ |
Perfect 5-mosstep | P5ms | L + 4s | 193.5 ¢ to 200.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 200.0 ¢ to 232.3 ¢ |
Major 6-mosstep | M6ms | 2L + 4s | 232.3 ¢ to 400.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | L + 6s | 200.0 ¢ to 271.0 ¢ |
Major 7-mosstep | M7ms | 2L + 5s | 271.0 ¢ to 400.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | L + 7s | 200.0 ¢ to 309.7 ¢ |
Major 8-mosstep | M8ms | 2L + 6s | 309.7 ¢ to 400.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | L + 8s | 200.0 ¢ to 348.4 ¢ |
Major 9-mosstep | M9ms | 2L + 7s | 348.4 ¢ to 400.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | L + 9s | 200.0 ¢ to 387.1 ¢ |
Major 10-mosstep | M10ms | 2L + 8s | 387.1 ¢ to 400.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 2L + 9s | 400.0 ¢ to 425.8 ¢ |
Major 11-mosstep | M11ms | 3L + 8s | 425.8 ¢ to 600.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 2L + 10s | 400.0 ¢ to 464.5 ¢ |
Major 12-mosstep | M12ms | 3L + 9s | 464.5 ¢ to 600.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 2L + 11s | 400.0 ¢ to 503.2 ¢ |
Major 13-mosstep | M13ms | 3L + 10s | 503.2 ¢ to 600.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 2L + 12s | 400.0 ¢ to 541.9 ¢ |
Major 14-mosstep | M14ms | 3L + 11s | 541.9 ¢ to 600.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 2L + 13s | 400.0 ¢ to 580.6 ¢ |
Major 15-mosstep | M15ms | 3L + 12s | 580.6 ¢ to 600.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 3L + 13s | 600.0 ¢ to 619.4 ¢ |
Major 16-mosstep | M16ms | 4L + 12s | 619.4 ¢ to 800.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 3L + 14s | 600.0 ¢ to 658.1 ¢ |
Major 17-mosstep | M17ms | 4L + 13s | 658.1 ¢ to 800.0 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 3L + 15s | 600.0 ¢ to 696.8 ¢ |
Major 18-mosstep | M18ms | 4L + 14s | 696.8 ¢ to 800.0 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 3L + 16s | 600.0 ¢ to 735.5 ¢ |
Major 19-mosstep | M19ms | 4L + 15s | 735.5 ¢ to 800.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 3L + 17s | 600.0 ¢ to 774.2 ¢ |
Major 20-mosstep | M20ms | 4L + 16s | 774.2 ¢ to 800.0 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 4L + 17s | 800.0 ¢ to 812.9 ¢ |
Major 21-mosstep | M21ms | 5L + 16s | 812.9 ¢ to 1000.0 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 4L + 18s | 800.0 ¢ to 851.6 ¢ |
Major 22-mosstep | M22ms | 5L + 17s | 851.6 ¢ to 1000.0 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 4L + 19s | 800.0 ¢ to 890.3 ¢ |
Major 23-mosstep | M23ms | 5L + 18s | 890.3 ¢ to 1000.0 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 4L + 20s | 800.0 ¢ to 929.0 ¢ |
Major 24-mosstep | M24ms | 5L + 19s | 929.0 ¢ to 1000.0 ¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 4L + 21s | 800.0 ¢ to 967.7 ¢ |
Major 25-mosstep | M25ms | 5L + 20s | 967.7 ¢ to 1000.0 ¢ | |
26-mosstep | Perfect 26-mosstep | P26ms | 5L + 21s | 1000.0 ¢ to 1006.5 ¢ |
Augmented 26-mosstep | A26ms | 6L + 20s | 1006.5 ¢ to 1200.0 ¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 5L + 22s | 1000.0 ¢ to 1045.2 ¢ |
Major 27-mosstep | M27ms | 6L + 21s | 1045.2 ¢ to 1200.0 ¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 5L + 23s | 1000.0 ¢ to 1083.9 ¢ |
Major 28-mosstep | M28ms | 6L + 22s | 1083.9 ¢ to 1200.0 ¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 5L + 24s | 1000.0 ¢ to 1122.6 ¢ |
Major 29-mosstep | M29ms | 6L + 23s | 1122.6 ¢ to 1200.0 ¢ | |
30-mosstep | Minor 30-mosstep | m30ms | 5L + 25s | 1000.0 ¢ to 1161.3 ¢ |
Major 30-mosstep | M30ms | 6L + 24s | 1161.3 ¢ to 1200.0 ¢ | |
31-mosstep | Perfect 31-mosstep | P31ms | 6L + 25s | 1200.0 ¢ |
Scale tree
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |