190edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
m Sort key
Line 166: Line 166:


[[Category:190edo| ]] <!-- main article -->
[[Category:190edo| ]] <!-- main article -->
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Unidec]]
[[Category:Unidec]]
[[Category:Ekadash]]
[[Category:Ekadash]]

Revision as of 21:23, 2 July 2022

← 189edo 190edo 191edo →
Prime factorization 2 × 5 × 19
Step size 6.31579 ¢ 
Fifth 111\190 (701.053 ¢)
Semitones (A1:m2) 17:15 (107.4 ¢ : 94.74 ¢)
Consistency limit 15
Distinct consistency limit 15

The 190 equal divisions of the octave (190edo) or 190(-tone) equal temperament (190tet, 190et) when view from a regular temperament perspective, divides the octave into 190 equal parts of about 6.32 cents each.

Theory

190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024 and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 847/845, 625/624, 729/728, 1575/1573 and 1001/1000, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-301 190 [190 301]] +0.285 0.285 4.51
2.3.5 2109375/2097152, [-7 22 -12 [190 301 441]] +0.341 0.246 3.89
2.3.5.7 1029/1024, 4375/4374, 235298/234375 [190 301 441 533]] +0.479 0.321 5.07
2.3.5.7.11 385/384, 441/440, 4375/4374, 234375/234256 [190 301 441 533 657]] +0.490 0.288 4.55
2.3.5.7.11.13 385/384, 441/440, 625/624, 729/728, 847/845 [190 301 441 533 657 703]] +0.432 0.293 4.63

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 37\190 233.68 8/7 Slendric
1 43\190 271.58 75/64 Orson / sabric
1 49\190 309.47 448/375 Triwell
1 71\190 448.42 35/27 Semidimfourth
1 83\190 524.21 65/48 Widefourth
2 28\190 176.84 195/176 Quatracot
2 29\190 183.16 10/9 Unidec / ekadash
2 59\190
(36\190)
372.63
(227.37)
26/21
(297/260)
Essence
2 71\190
(24\190)
448.42
(151.58)
35/27
(12/11)
Neusec
5 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Pental
10 50\190
(7\190)
315.79
(45.79)
6/5
(40/39)
Deca
10 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Decal
19 79\190
(1\190)
498.95
(6.32)
4/3
(225/224)
Enneadecal
38 79\190
(1\190)
498.95
(6.32)
4/3
(225/224)
Hemienneadecal

Scales

Music