190edo: Difference between revisions
m →Regular temperament properties: comma basis |
m Sort key |
||
Line 166: | Line 166: | ||
[[Category:190edo| ]] <!-- main article --> | [[Category:190edo| ]] <!-- main article --> | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | ||
[[Category:Unidec]] | [[Category:Unidec]] | ||
[[Category:Ekadash]] | [[Category:Ekadash]] |
Revision as of 21:23, 2 July 2022
← 189edo | 190edo | 191edo → |
The 190 equal divisions of the octave (190edo) or 190(-tone) equal temperament (190tet, 190et) when view from a regular temperament perspective, divides the octave into 190 equal parts of about 6.32 cents each.
Theory
190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024 and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 847/845, 625/624, 729/728, 1575/1573 and 1001/1000, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-301 190⟩ | [⟨190 301]] | +0.285 | 0.285 | 4.51 |
2.3.5 | 2109375/2097152, [-7 22 -12⟩ | [⟨190 301 441]] | +0.341 | 0.246 | 3.89 |
2.3.5.7 | 1029/1024, 4375/4374, 235298/234375 | [⟨190 301 441 533]] | +0.479 | 0.321 | 5.07 |
2.3.5.7.11 | 385/384, 441/440, 4375/4374, 234375/234256 | [⟨190 301 441 533 657]] | +0.490 | 0.288 | 4.55 |
2.3.5.7.11.13 | 385/384, 441/440, 625/624, 729/728, 847/845 | [⟨190 301 441 533 657 703]] | +0.432 | 0.293 | 4.63 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 37\190 | 233.68 | 8/7 | Slendric |
1 | 43\190 | 271.58 | 75/64 | Orson / sabric |
1 | 49\190 | 309.47 | 448/375 | Triwell |
1 | 71\190 | 448.42 | 35/27 | Semidimfourth |
1 | 83\190 | 524.21 | 65/48 | Widefourth |
2 | 28\190 | 176.84 | 195/176 | Quatracot |
2 | 29\190 | 183.16 | 10/9 | Unidec / ekadash |
2 | 59\190 (36\190) |
372.63 (227.37) |
26/21 (297/260) |
Essence |
2 | 71\190 (24\190) |
448.42 (151.58) |
35/27 (12/11) |
Neusec |
5 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Pental |
10 | 50\190 (7\190) |
315.79 (45.79) |
6/5 (40/39) |
Deca |
10 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Decal |
19 | 79\190 (1\190) |
498.95 (6.32) |
4/3 (225/224) |
Enneadecal |
38 | 79\190 (1\190) |
498.95 (6.32) |
4/3 (225/224) |
Hemienneadecal |