472edo: Difference between revisions
Cleanup and expansion |
+RTT table and rank-2 temperaments |
||
Line 7: | Line 7: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|472}} | {{Harmonics in equal|472}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 32805/32768, {{monzo| 8 14 -13 }} | |||
| [{{val| 472 748 1096 1325 }}] | |||
| +0.0435 | |||
| 0.0814 | |||
| 3.20 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 9801/9800, 32805/32768, 46656/46585 | |||
| [{{val| 472 748 1096 1325 1633 }}] | |||
| +0.0130 | |||
| 0.0950 | |||
| 3.74 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 729/728, 1575/1573, 2200/2197, 2401/2400, 4096/4095 | |||
| [{{val| 472 748 1096 1325 1633 1747 }}] | |||
| -0.0341 | |||
| 0.1365 | |||
| 5.37 | |||
|} | |||
=== Rank-2 temperaments === | |||
Note: 5-limit temperaments supported by [[118edo|118et]] are not included. | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 69\472 | |||
| 175.42 | |||
| 448/405 | |||
| [[Sesquiquartififths]] | |||
|- | |||
| 1 | |||
| 137\472 | |||
| 348.31 | |||
| 57344/46875 | |||
| [[Subneutral]] | |||
|- | |||
| 1 | |||
| 205\472 | |||
| 498.31 | |||
| 875/648 | |||
| [[Maviloid]] | |||
|- | |||
| 2 | |||
| 69\472 | |||
| 175.42 | |||
| 448/405 | |||
| [[Bisesqui]] | |||
|- | |||
| 8 | |||
| 196\472<br>(19\472) | |||
| 498.31<br>(48.31) | |||
| 4/3<br>(36/35) | |||
| [[Octant]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Zeta]] | [[Category:Zeta]] |
Revision as of 19:37, 30 January 2022
472edo is the equal division of the octave into 472 parts of 2.54237 cents each.
472edo is consistent to the 11-odd-limit. It is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma. In the 7-limit, it tempers out 2401/2400, 2460375/2458624, and 30623756184/30517578125; in the 11-limit, 9801/9800, 46656/46585, 117649/117612, and 234375/234256 , supporting the maviloid temperament, the bisesqui temperament, and the octant temperament. Using the patent val, it tempers out 729/728, 1575/1573, 2200/2197, 4096/4095, and 21168/21125 in the 13-limit, so it also supports the 13-limit octant.
It is a zeta peak integer edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.13 | -0.18 | +0.38 | +1.00 | -0.72 | -0.06 | -0.31 | +0.08 | -0.97 |
Relative (%) | +0.0 | -10.2 | +5.0 | -7.2 | +14.8 | +39.2 | -28.2 | -2.2 | -12.1 | +3.3 | -38.1 | |
Steps (reduced) |
472 (0) |
748 (276) |
1096 (152) |
1325 (381) |
1633 (217) |
1747 (331) |
1929 (41) |
2005 (117) |
2135 (247) |
2293 (405) |
2338 (450) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 32805/32768, [8 14 -13⟩ | [⟨472 748 1096 1325]] | +0.0435 | 0.0814 | 3.20 |
2.3.5.7.11 | 2401/2400, 9801/9800, 32805/32768, 46656/46585 | [⟨472 748 1096 1325 1633]] | +0.0130 | 0.0950 | 3.74 |
2.3.5.7.11.13 | 729/728, 1575/1573, 2200/2197, 2401/2400, 4096/4095 | [⟨472 748 1096 1325 1633 1747]] | -0.0341 | 0.1365 | 5.37 |
Rank-2 temperaments
Note: 5-limit temperaments supported by 118et are not included.
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 69\472 | 175.42 | 448/405 | Sesquiquartififths |
1 | 137\472 | 348.31 | 57344/46875 | Subneutral |
1 | 205\472 | 498.31 | 875/648 | Maviloid |
2 | 69\472 | 175.42 | 448/405 | Bisesqui |
8 | 196\472 (19\472) |
498.31 (48.31) |
4/3 (36/35) |
Octant |