328edo: Difference between revisions
+infobox |
mNo edit summary |
||
Line 2: | Line 2: | ||
| Prime factorization = 2<sup>3</sup> × 41 | | Prime factorization = 2<sup>3</sup> × 41 | ||
| Step size = 3.65854¢ | | Step size = 3.65854¢ | ||
| Fifth = 192\328 (702.44¢) → | | Fifth = 192\328 (702.44¢) (→ [[41edo|24\41]]) | ||
| Semitones = 32:24 (117.07¢ : 87.80¢) | | Semitones = 32:24 (117.07¢ : 87.80¢) | ||
| Consistency = 13 | | Consistency = 13 |
Revision as of 17:21, 29 December 2021
← 327edo | 328edo | 329edo → |
The 328 equal divisions of the octave (328edo), or the 328(-tone) equal temperament (328tet, 328et) when viewed from a regular temperament perspective, divides the octave into 328 equal parts of about 3.66 cents each.
Theory
328edo is enfactored in the 5-limit, with the same tuning as 164edo. It tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.
328 factors into 23 × 41, with subset edos 2, 4, 8, 41, 82, and 164.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 3136/3125, 589824/588245 | [⟨328 520 762 921]] | -0.298 | 0.229 | 6.27 |
2.3.5.7.11 | 2401/2400, 3136/3125, 9801/9800, 19712/19683 | [⟨328 520 762 921 1135]] | -0.303 | 0.205 | 5.61 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 | [⟨328 520 762 921 1135 1214]] | -0.295 | 0.188 | 5.15 |
2.3.5.7.11.13.17 | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 | [⟨328 520 762 921 1135 1214 1341]] | -0.293 | 0.174 | 4.77 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 53\328 | 193.90 | 28/25 | Hemiwürschmidt |
1 | 117\328 | 428.05 | 2800/2187 | Osiris |
2 | 17\328 | 62.20 | 28/27 | Eagle |
2 | 111\328 (53\328) |
406.10 (193.90) |
495/392 (28/25) |
Semihemiwürschmidt |
8 | 136\328 (13\328) |
497.56 (47.56) |
4/3 (36/35) |
Twilight |
41 | 49\328 (1\328) |
179.27 (3.66) |
567/512 (352/351) |
Hemicounterpyth |