152edo: Difference between revisions
Replace the dead link |
+RTT table |
||
Line 1: | Line 1: | ||
The '''152 equal division''' divides the octave into 152 equally sized parts of 7.895 cents each. | The '''152 equal division''' divides the octave into 152 equally sized parts of 7.895 cents each. | ||
== Theory == | |||
152et is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It tempers out 1600000/1594323, the [[amity comma]], in the 5-limit; [[4375/4374]], [[5120/5103]], [[6144/6125]] and [[16875/16807]] in the 7-limit; [[540/539]], 1375/1372, [[4000/3993]], 5632/5625 and [[9801/9800]] in the 11-limit. | 152et is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It tempers out 1600000/1594323, the [[amity comma]], in the 5-limit; [[4375/4374]], [[5120/5103]], [[6144/6125]] and [[16875/16807]] in the 7-limit; [[540/539]], 1375/1372, [[4000/3993]], 5632/5625 and [[9801/9800]] in the 11-limit. | ||
Line 9: | Line 10: | ||
[[Paul Erlich]] has suggested that 152edo could be considered a sort of [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3038.html#3041 universal tuning]. | [[Paul Erlich]] has suggested that 152edo could be considered a sort of [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3038.html#3041 universal tuning]. | ||
152 = 8 × 19, with divisors 2, 4, 8, 19, 38, 76. | 152 = 8 × 19, with divisors 2, 4, 8, 19, 38, 76. | ||
=== Prime harmonics === | |||
{{Primes in edo|152}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 241 -152 }} | |||
| [{{val| 152 241 }}] | |||
| -0.213 | |||
| 0.213 | |||
| 2.70 | |||
|- | |||
| 2.3.5 | |||
| 1600000/1594323, {{monzo| 32 -7 -9 }} | |||
| [{{val| 152 241 353 }}] | |||
| -0.218 | |||
| 0.174 | |||
| 2.21 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 5120/5103, 16875/16807 | |||
| [{{val| 152 241 353 427 }}] | |||
| -0.362 | |||
| 0.291 | |||
| 3.69 | |||
|- | |||
| 2.3.5.7.11 | |||
| 540/539, 1375/1372, 4000/3993, 5120/5103 | |||
| [{{val| 152 241 353 427 526 }}] | |||
| -0.365 | |||
| 0.260 | |||
| 3.30 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 352/351, 540/539, 625/624, 729/728, 1575/1573 | |||
| [{{val| 152 241 353 427 526 563 }}] (152f) | |||
| -0.494 | |||
| 0.373 | |||
| 4.73 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 7\152 | |||
| 55.26 | |||
| 33/32 | |||
| [[Escapade]] / [[alphaquarter]] | |||
|- | |||
| 1 | |||
| 31\152 | |||
| 244.74 | |||
| 15/13 | |||
| [[Subsemifourth]] | |||
|- | |||
| 1 | |||
| 39\152 | |||
| 307.89 | |||
| 3200/2673 | |||
| [[Familia]] | |||
|- | |||
| 1 | |||
| 43\152 | |||
| 339.47 | |||
| 243/200 | |||
| [[Amity]] | |||
|- | |||
| 1 | |||
| 49\152 | |||
| 386.84 | |||
| 5/4 | |||
| [[Grendel]] | |||
|- | |||
| 1 | |||
| 63\152 | |||
| 497.37 | |||
| 4/3 | |||
| [[Kwai]] | |||
|- | |||
| 1 | |||
| 71\152 | |||
| 560.53 | |||
| 242/175 | |||
| [[Whoosh]] / [[whoops]] | |||
|- | |||
| 2 | |||
| 7\152 | |||
| 55.26 | |||
| 33/32 | |||
| [[Biscapade]] | |||
|- | |||
| 2 | |||
| 9\152 | |||
| 71.05 | |||
| 25/24 | |||
| [[Vishnuzmic]] / [[vishnu]] / [[acyuta]] (152f) / [[ananta]] (152) | |||
|- | |||
| 2 | |||
| 43\152<br>(33\152) | |||
| 339.47<br>(260.53) | |||
| 243/200<br>(64/55) | |||
| [[Hemiamity]] | |||
|- | |||
| 2 | |||
| 55\152<br>(21\152) | |||
| 434.21<br>(165.79) | |||
| 9/7<br>(11/10) | |||
| [[Supers]] | |||
|- | |||
| 4 | |||
| 63\152<br>(13\152) | |||
| 497.37<br>(102.63) | |||
| 4/3<br>(35/33) | |||
| [[Undim]] | |||
|- | |||
| 8 | |||
| 74\152<br>(2\152) | |||
| 584.21<br>(15.79) | |||
| 7/5<br>(126/125) | |||
| [[Octoid]] (152f) / [[octopus]] (152) | |||
|- | |||
| 19 | |||
| 63\152<br>(1\152) | |||
| 497.37<br>(7.89) | |||
| 4/3<br>(225/224) | |||
| [[Enneadecal]] | |||
|- | |||
| 38 | |||
| 63\152<br>(1\152) | |||
| 497.37<br>(7.89) | |||
| 4/3<br>(225/224) | |||
| [[Hemienneadecal]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Grendel]] | [[Category:Grendel]] | ||
[[Category:Kwai]] | [[Category:Kwai]] |
Revision as of 06:50, 13 July 2021
The 152 equal division divides the octave into 152 equally sized parts of 7.895 cents each.
Theory
152et is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It tempers out 1600000/1594323, the amity comma, in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/16807 in the 7-limit; 540/539, 1375/1372, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit.
It has two reasonable mappings for 13, with the 152f val scoring much better. The patent val tempers out 169/168, 325/324, 351/350, 364/363, 1001/1000, and 4096/4095. The 152f val tempers out 352/351, 625/624, 640/637, 729/728, 847/845, 1575/1573, 1716/1715 and 2080/2079.
It provides the optimal patent val for the 11-limit grendel and kwai linear temperaments, the 13-limit rank two temperament octopus, the 11-limit planar temperament laka, and the rank five temperament tempering out 169/168.
Paul Erlich has suggested that 152edo could be considered a sort of universal tuning.
152 = 8 × 19, with divisors 2, 4, 8, 19, 38, 76.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [241 -152⟩ | [⟨152 241]] | -0.213 | 0.213 | 2.70 |
2.3.5 | 1600000/1594323, [32 -7 -9⟩ | [⟨152 241 353]] | -0.218 | 0.174 | 2.21 |
2.3.5.7 | 4375/4374, 5120/5103, 16875/16807 | [⟨152 241 353 427]] | -0.362 | 0.291 | 3.69 |
2.3.5.7.11 | 540/539, 1375/1372, 4000/3993, 5120/5103 | [⟨152 241 353 427 526]] | -0.365 | 0.260 | 3.30 |
2.3.5.7.11.13 | 352/351, 540/539, 625/624, 729/728, 1575/1573 | [⟨152 241 353 427 526 563]] (152f) | -0.494 | 0.373 | 4.73 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 7\152 | 55.26 | 33/32 | Escapade / alphaquarter |
1 | 31\152 | 244.74 | 15/13 | Subsemifourth |
1 | 39\152 | 307.89 | 3200/2673 | Familia |
1 | 43\152 | 339.47 | 243/200 | Amity |
1 | 49\152 | 386.84 | 5/4 | Grendel |
1 | 63\152 | 497.37 | 4/3 | Kwai |
1 | 71\152 | 560.53 | 242/175 | Whoosh / whoops |
2 | 7\152 | 55.26 | 33/32 | Biscapade |
2 | 9\152 | 71.05 | 25/24 | Vishnuzmic / vishnu / acyuta (152f) / ananta (152) |
2 | 43\152 (33\152) |
339.47 (260.53) |
243/200 (64/55) |
Hemiamity |
2 | 55\152 (21\152) |
434.21 (165.79) |
9/7 (11/10) |
Supers |
4 | 63\152 (13\152) |
497.37 (102.63) |
4/3 (35/33) |
Undim |
8 | 74\152 (2\152) |
584.21 (15.79) |
7/5 (126/125) |
Octoid (152f) / octopus (152) |
19 | 63\152 (1\152) |
497.37 (7.89) |
4/3 (225/224) |
Enneadecal |
38 | 63\152 (1\152) |
497.37 (7.89) |
4/3 (225/224) |
Hemienneadecal |