User:FloraC/Sandbox: Difference between revisions
m →Temperament pages: update |
m →Temperament pages: update |
||
Line 46: | Line 46: | ||
* <s>Canou family</s> | * <s>Canou family</s> | ||
* <s>Starling temperaments</s> | * <s>Starling temperaments</s> | ||
* | * <s>Starling family</s> | ||
* <s>Sensipent family</s> | * <s>Sensipent family</s> | ||
* <s>Sensamagic clan</s> | * <s>Sensamagic clan</s> | ||
Line 80: | Line 80: | ||
* [[Escapade family]] | * [[Escapade family]] | ||
* [[Gravity family]] | * [[Gravity family]] | ||
* | * <s>Cataharry family</s> | ||
* | * <s>Cataharry temperaments</s> | ||
* [[Varunismic temperaments]] | * [[Varunismic temperaments]] | ||
* [[ | * <s>Werckismic temperaments</s> | ||
* [[Valinorsmic temperaments]] | |||
== As a regular temperament == | == As a regular temperament == |
Revision as of 10:30, 8 June 2021
Temperament pages
Databoxes has been canceled, but the cleanup will continue
Note:
- Order: subgroup, comma list, (sval) mapping, (sval) mapping generators, gencom mapping, gencom, map to lattice, lattice basis, wedgie, POTE generator(s), minimax tuning, tuning ranges, algebraic generator, vals, badness, complexity spectrum, and others.
- Comma list should show the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Since minimax tuning are based on tonality diamond, it should explicitly state the odd limit, or a diamond function of ratios.
- Replace "EDOs" with Template:Val list.
- For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (sic), simply show "POTE", otherwise show "POL2" or "POT2" instead of "POTE".
Get a family for:
Ripple (3 different 7-limit extensions)doneSmate (2 different 7-limit extensions)doneParakleismic (2 different 7-limit extensions)canceled, not strong extensionsSuperpyth (2 different 7-limit extensions)canceled, not strong extensions
Who's next?
Meantone familyArchytas clanFather familyTrienstonic clanSeptisemi temperamentsArchytas familySlendro clanSemiphore familyMarvel temperamentsMarvel familyMint temperamentsMint familyGamelismic clanGamelismic familyJubilismic clanJubilismic familyDidymus rank three familyKleismic familyKleismic rank three familyShibboleth familyKeemic temperamentsKeemic familySchismatic familyHemimean clanHemimean familyLuna familyCanousmic temperamentsCanou familyStarling temperamentsStarling familySensipent familySensamagic clanSensamagic familyMagic familyUnicorn familyTrisedodge familySycamore familyRastmic temperamentsSemicomma familyOrwellismic temperamentsHemimage temperamentsHemimage familyPorwell temperaments- Porwell family
Hemifamity temperamentsHemifamity familyPorcupine familyTetracot familyMisty familyDiaschismic familyAmity familyLehmerismic temperamentsKalismic temperamentsRagismic familyLandscape familyDimcomp familyMirkwai familyMirkwai clanBreed family- Breedsmic temperaments
- Ragismic microtemperaments
- Escapade family
- Gravity family
Cataharry familyCataharry temperaments- Varunismic temperaments
Werckismic temperaments- Valinorsmic temperaments
As a regular temperament
3-limit
Subgroup: 2.3
Comma list: [-49 31⟩
Mapping: ⟨31 49]
TE octave stretch: +1.63¢
TE absolute error (¢): 1.64
TE relative error (%): 4.22
5-limit
Subgroup: 2.3.5
Comma list: 81/80, 393216/390625
Mapping: ⟨31 49 72]
TE octave stretch: +0.98¢
TE absolute error (¢): 1.63
TE relative error (%): 4.20
7-limit
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125, 1029/1024
Mapping: ⟨31 49 72 87]
TE octave stretch: +0.83¢
TE absolute error (¢): 1.43
TE relative error (%): 3.70
Septimal meantone
The 7/4 of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are 7/6, C-D#, the augmented second, 7/5, C-F#, the tritone, and 21/16, C-E#, the augmented third. Septimal meantone tempers out the common 7-limit commas 126/125 and 225/224 and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
Mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 4 10 4 13 12 ]]
POTE generator: ~3/2 = 696.495
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [1 0 1/4 0⟩, [0 0 1 0⟩, [-3 0 5/2 0⟩]
- Eigenmonzos: 2, 5
- valid range: [694.737, 700.000] (11\19 to 7\12)
- nice range: [694.786, 701.955]
- strict range: [694.786, 700.000]
Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, 503.4257 cents. The recurrence converges quickly.
Badness: 0.0137
Scales: meantone5, meantone7, meantone12
Archytas
Subgroup: 2.3.5.7
Comma list: 64/63
Mapping: [⟨1 0 0 6], ⟨0 1 0 -2], ⟨0 0 1 0]]
Mapping generators: ~2, ~3, ~5
Map to lattice: [⟨0 1 0 -2], ⟨0 0 1 0]]
Lattice basis:
- 3/2 length = 1.0508, 5/4 length = 2.3219
- Angle (3/2, 5/4) = 90 degrees
POTE generators: ~3/2 = 709.3213, ~5/4 = 393.3747
- [[1 0 0 0⟩, [2 1/3 0 -1/3⟩, [2 -2/3 1 -1/3⟩, [2 -2/3 0 2/3⟩]
- Eigenmonzos: 2, 6/5, 7/5
- [[1 0 0 0⟩, [3/2 1/2 0 -1/4⟩, [3/2 -1/2 1 -1/4⟩, [3 -1 0 1/2⟩]
- Eigenmonzos: 2, 6/5, 9/7
Scales: archytas12, archytas12synch
Scale tree
(Bounded by branch depth = 7)
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4\7 | 685.714 | 1 | 1 | 1.000 | |||||||
27\47 | 689.362 | 7 | 6 | 1.167 | |||||||
23\40 | 690.000 | 6 | 5 | 1.200 | |||||||
42\73 | 690.411 | 11 | 9 | 1.222 | |||||||
19\33 | 690.909 | 5 | 4 | 1.250 | |||||||
53\92 | 691.304 | 14 | 11 | 1.273 | |||||||
34\59 | 691.525 | 9 | 7 | 1.286 | |||||||
49\85 | 691.765 | 13 | 10 | 1.300 | |||||||
15\26 | 692.308 | 4 | 3 | 1.333 | |||||||
56\97 | 692.784 | 15 | 11 | 1.364 | |||||||
41\71 | 692.958 | 11 | 8 | 1.375 | |||||||
67\116 | 693.103 | 18 | 13 | 1.385 | |||||||
26\45 | 693.333 | 7 | 5 | 1.400 | |||||||
63\109 | 693.578 | 17 | 12 | 1.417 | |||||||
37\64 | 693.750 | 10 | 7 | 1.429 | |||||||
48\83 | 693.976 | 13 | 9 | 1.444 | |||||||
11\19 | 694.737 | 3 | 2 | 1.500 | L/s = 3/2 | ||||||
51\88 | 695.455 | 14 | 9 | 1.556 | |||||||
40\69 | 695.652 | 11 | 7 | 1.571 | |||||||
69\119 | 695.798 | 19 | 12 | 1.583 | |||||||
29\50 | 696.000 | 8 | 5 | 1.600 | |||||||
66\131 | 696.183 | 21 | 13 | 1.615 | Golden meantone | ||||||
47\81 | 696.296 | 13 | 8 | 1.625 | |||||||
65\112 | 696.429 | 18 | 11 | 1.636 | |||||||
18\31 | 696.774 | 5 | 3 | 1.667 | Meantone is in this region | ||||||
61\105 | 697.143 | 17 | 10 | 1.700 | |||||||
43\74 | 697.297 | 12 | 7 | 1.714 | |||||||
68\117 | 697.436 | 19 | 11 | 1.727 | |||||||
25\43 | 697.674 | 7 | 4 | 1.750 | |||||||
57\98 | 697.959 | 16 | 9 | 1.778 | |||||||
32\55 | 698.182 | 9 | 5 | 1.800 | |||||||
39\67 | 698.507 | 11 | 6 | 1.833 | |||||||
7\12 | 700.000 | 2 | 1 | 2.000 | Basic diatonic (Generators smaller than this are proper) | ||||||
38\65 | 701.539 | 11 | 5 | 2.200 | |||||||
31\53 | 701.887 | 9 | 4 | 2.250 | |||||||
55\94 | 702.128 | 16 | 7 | 2.286 | |||||||
24\41 | 702.409 | 7 | 3 | 2.333 | |||||||
65\111 | 702.703 | 19 | 8 | 2.375 | |||||||
41\70 | 702.857 | 12 | 5 | 2.400 | |||||||
58\99 | 703.030 | 17 | 7 | 2.428 | |||||||
17\29 | 703.448 | 5 | 2 | 2.500 | |||||||
61\104 | 703.846 | 18 | 7 | 2.571 | |||||||
44\75 | 704.000 | 13 | 5 | 2.600 | |||||||
71\121 | 704.132 | 21 | 8 | 2.625 | Golden neogothic | ||||||
27\46 | 704.348 | 8 | 3 | 2.667 | |||||||
64\109 | 704.587 | 19 | 7 | 2.714 | |||||||
37\63 | 704.762 | 11 | 4 | 2.750 | |||||||
47\80 | 705.000 | 14 | 5 | 2.800 | |||||||
10\17 | 705.882 | 3 | 1 | 3.000 | L/s = 3/1 | ||||||
43\73 | 706.849 | 13 | 4 | 3.250 | |||||||
33\56 | 707.143 | 10 | 3 | 3.333 | |||||||
56\95 | 707.368 | 17 | 5 | 3.400 | |||||||
23\39 | 707.692 | 7 | 2 | 3.500 | |||||||
59\100 | 708.000 | 18 | 5 | 3.600 | |||||||
36\61 | 708.197 | 11 | 3 | 3.667 | |||||||
49\83 | 708.434 | 15 | 4 | 3.750 | |||||||
13\22 | 709.091 | 4 | 1 | 4.000 | Archy is in this region | ||||||
42\71 | 709.859 | 13 | 3 | 4.333 | |||||||
29\49 | 710.204 | 9 | 2 | 4.500 | |||||||
45\76 | 710.526 | 14 | 3 | 4.667 | |||||||
16\27 | 711.111 | 5 | 1 | 5.000 | |||||||
35\59 | 711.864 | 11 | 2 | 5.500 | |||||||
19\32 | 712.500 | 6 | 1 | 6.000 | |||||||
22\37 | 713.514 | 7 | 1 | 7.000 | |||||||
3\5 | 720.000 | 1 | 0 | → inf |