Syntonic–kleismic equivalence continuum: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
All temperaments in the continuum satisfy (81/80)<sup>''n''</sup> ~ {{monzo|-14 -19 19}}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[meantone]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[19edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''n'' is approximately 0.1309..., and temperaments having ''n'' near this value tend to be the most accurate ones. | All temperaments in the continuum satisfy (81/80)<sup>''n''</sup> ~ {{monzo|-14 -19 19}}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[meantone]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[19edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''n'' is approximately 0.1309..., and temperaments having ''n'' near this value tend to be the most accurate ones. | ||
{| class="wikitable center-1 center-2" | Alternatively, we can express the continuum in terms of (81/80)<sup>''k''</sup> ~ {{monzo|-30 19}}; in this case, ''k'' = (''n'' + 19) / 3. | ||
{| class="wikitable center-1 center-2 center-3" | |||
|+ Temperaments in the continuum | |+ Temperaments in the continuum | ||
|- | |- | ||
! rowspan="2" | ''n'' | ! rowspan="2" | ''n'' | ||
! rowspan="2" | ''k'' | |||
! rowspan="2" | Temperament | ! rowspan="2" | Temperament | ||
! colspan="2" | Comma | ! colspan="2" | Comma | ||
Line 13: | Line 16: | ||
! Monzo | ! Monzo | ||
|- | |- | ||
| -19 | |||
| 0 | | 0 | ||
| 19edo | |||
| [[1162261467/1073741824]] | |||
| {{monzo|-30 19}} | |||
|- | |||
| -16 | |||
| 1 | |||
| Lalayo | |||
| [[71744535/67108864]] | |||
| {{monzo|-26 15 1}} | |||
|- | |||
| -13 | |||
| 2 | |||
| Lala-Yoyo | |||
| [[4428675/4194304]] | |||
| {{monzo|-22 11 2}} | |||
|- | |||
| -12 | |||
| 7/3 | |||
| 19 & 8ccc | |||
| | |||
| {{monzo|-62 29 7}} | |||
|- | |||
| -11 | |||
| 8/3 | |||
| 19 & 1cc | |||
| | |||
| {{monzo|-58 25 8}} | |||
|- | |||
| -10 | |||
| 3 | |||
| Latriyo | |||
| [[273375/262144]] | |||
| {{monzo|-18 7 3}} | |||
|- | |||
| -9 | |||
| 10/3 | |||
| 19 & 6c | |||
| | |||
| {{monzo|-50 17 10}} | |||
|- | |||
| -8 | |||
| 11/3 | |||
| 19 & 11c | |||
| | |||
| {{monzo|-46 13 11}} | |||
|- | |||
| -7 | |||
| 4 | |||
| [[Negri]] | |||
| [[16875/16384]] | |||
| {{monzo|-14 3 4}} | |||
|- | |||
| -6 | |||
| 13/3 | |||
| 19 & 23b | |||
| [[296630859375/274877906944]] | |||
| {{monzo|-38 5 13}} | |||
|- | |||
| -5 | |||
| 14/3 | |||
| 19 & 35b | |||
| [[18310546875/17179869184]] | |||
| {{monzo|-34 1 14}} | |||
|- | |||
| -4 | |||
| 5 | |||
| [[Magic]] | |||
| [[3125/3072]] | |||
| {{monzo|-10 -1 5}} | |||
|- | |||
| -3 | |||
| 16/3 | |||
| 19 & 78 | |||
| [[152587890625/146767085568]] | |||
| {{monzo|-26 -7 16}} | |||
|- | |||
| -2 | |||
| 17/3 | |||
| 19 & 109 | |||
| [[762939453125/743008370688]] | |||
| {{monzo|-22 -11 17}} | |||
|- | |||
| -1 | |||
| 6 | |||
| [[Hanson]] | |||
| [[15625/15552]] | |||
| {{monzo|-6 -5 6}} | |||
|- | |||
| 0 | |||
| 19/3 | |||
| [[Enneadecal]] | | [[Enneadecal]] | ||
| | | | ||
Line 19: | Line 113: | ||
|- | |- | ||
| 1 | | 1 | ||
| 20/3 | |||
| [[Countermeantone]] | | [[Countermeantone]] | ||
| | | | ||
Line 24: | Line 119: | ||
|- | |- | ||
| 2 | | 2 | ||
| 7 | |||
| [[Sensi]] | | [[Sensi]] | ||
| [[78732/78125]] | | [[78732/78125]] | ||
Line 29: | Line 125: | ||
|- | |- | ||
| 3 | | 3 | ||
| 22/3 | |||
| 19 & 169c | | 19 & 169c | ||
| | | | ||
Line 34: | Line 131: | ||
|- | |- | ||
| 4 | | 4 | ||
| 23/3 | |||
| 19 & 162c | | 19 & 162c | ||
| | | | ||
Line 39: | Line 137: | ||
|- | |- | ||
| 5 | | 5 | ||
| 8 | |||
| [[Unicorn]] | | [[Unicorn]] | ||
| [[1594323/1562500]] | | [[1594323/1562500]] | ||
Line 48: | Line 147: | ||
| … | | … | ||
|- | |- | ||
| ∞ | |||
| ∞ | | ∞ | ||
| [[Meantone]] | | [[Meantone]] |
Revision as of 12:07, 14 March 2021
The syntonic-enneadecal equivalence continuum is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the enneadeca ([-14 -19 19⟩).
All temperaments in the continuum satisfy (81/80)n ~ [-14 -19 19⟩. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 0.1309..., and temperaments having n near this value tend to be the most accurate ones.
Alternatively, we can express the continuum in terms of (81/80)k ~ [-30 19⟩; in this case, k = (n + 19) / 3.
n | k | Temperament | Comma | |
---|---|---|---|---|
Ratio | Monzo | |||
-19 | 0 | 19edo | 1162261467/1073741824 | [-30 19⟩ |
-16 | 1 | Lalayo | 71744535/67108864 | [-26 15 1⟩ |
-13 | 2 | Lala-Yoyo | 4428675/4194304 | [-22 11 2⟩ |
-12 | 7/3 | 19 & 8ccc | [-62 29 7⟩ | |
-11 | 8/3 | 19 & 1cc | [-58 25 8⟩ | |
-10 | 3 | Latriyo | 273375/262144 | [-18 7 3⟩ |
-9 | 10/3 | 19 & 6c | [-50 17 10⟩ | |
-8 | 11/3 | 19 & 11c | [-46 13 11⟩ | |
-7 | 4 | Negri | 16875/16384 | [-14 3 4⟩ |
-6 | 13/3 | 19 & 23b | 296630859375/274877906944 | [-38 5 13⟩ |
-5 | 14/3 | 19 & 35b | 18310546875/17179869184 | [-34 1 14⟩ |
-4 | 5 | Magic | 3125/3072 | [-10 -1 5⟩ |
-3 | 16/3 | 19 & 78 | 152587890625/146767085568 | [-26 -7 16⟩ |
-2 | 17/3 | 19 & 109 | 762939453125/743008370688 | [-22 -11 17⟩ |
-1 | 6 | Hanson | 15625/15552 | [-6 -5 6⟩ |
0 | 19/3 | Enneadecal | [-14 -19 19⟩ | |
1 | 20/3 | Countermeantone | [-10 -23 20⟩ | |
2 | 7 | Sensi | 78732/78125 | [2 9 -7⟩ |
3 | 22/3 | 19 & 169c | [2 31 -22⟩ | |
4 | 23/3 | 19 & 162c | [-2 35 -23⟩ | |
5 | 8 | Unicorn | 1594323/1562500 | [-2 13 -8⟩ |
… | … | … | … | |
∞ | ∞ | Meantone | 81/80 | [-4 4 -1⟩ |
Examples of temperaments with fractional values of n:
- Parakleismic (n = 0.5)
- 19 & 506 (n = 1/3 = 0.3)
19 & 506
Commas: [38 61 -58⟩
POTE generator: 505.1394 cents
Map: [<1 26 28|, <0 -58 -61|]