Jubilismic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Intro
Line 1: Line 1:
{{Technical data page}}
{{Technical data page}}
The '''jubilismic family''' contains temperaments that temper out the [[jubilisma|jubilisma (50/49)]] (also called tritonic diesis, or septimal sixth-tone). It therefore identifies the two septimal tritones [[7/5]] and [[10/7]], an identification familiar from [[12edo]]. While most rank-three temperaments are planar, a jubilismic temperament divides the octave in two.
The '''jubilismic family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[50/49]] in the full [[7-limit]]. It therefore identifies the two septimal tritones [[7/5]] and [[10/7]], an identification familiar from [[12edo]]. While many rank-3 temperaments are planar, a jubilismic temperament divides the [[2/1|octave]] in two. Related to this is the 2.5.7-subgroup {50/49} temperament [[jubilic]].  


== Jubilismic ==
== Jubilismic ==

Revision as of 13:09, 22 July 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The jubilismic family of rank-3 temperaments tempers out 50/49 in the full 7-limit. It therefore identifies the two septimal tritones 7/5 and 10/7, an identification familiar from 12edo. While many rank-3 temperaments are planar, a jubilismic temperament divides the octave in two. Related to this is the 2.5.7-subgroup {50/49} temperament jubilic.

Jubilismic

Subgroup: 2.3.5.7

Comma list: 50/49

Mapping[2 0 0 1], 0 1 0 0], 0 0 1 1]]

mapping generators: ~7/5, ~3, ~5

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 702.9804, ~5/4 = 380.8399

Minimax tuning:

[[1 0 0 0, [0 1 0 0, [-1/4 0 1/2 1/2, [1/4 0 1/2 1/2]
unchanged-interval (eigenmonzo) basis: 2.3.35

Optimal ET sequence4, 8d, 10, 12, 22, 34d, 48

Scales: jubilismic10, jubilismic12

Jubilee

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98

Mapping[2 0 0 1 4], 0 1 0 0 -2], 0 0 1 1 2]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 703.4155, ~5/4 = 380.6973

Optimal ET sequence4, 8d, 10e, 12, 22, 34d, 48

Badness: 0.600 × 10-3

Festival

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49

Mapping[2 0 0 1 -4], 0 1 0 0 2], 0 0 1 1 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 693.6257, ~5/4 = 371.2658

Optimal ET sequence10, 12, 22e, 26

Badness: 0.689 × 10-3

Fiesta

Subgroup: 2.3.5.7.11

Comma list: 50/49, 56/55

Mapping[2 0 0 1 7], 0 1 0 0 0], 0 0 1 1 0]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 713.5853, ~5/4 = 397.6952

Optimal ET sequence8d, 10, 12, 22e

Badness: 0.717 × 10-3

Jamboree

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54

Mapping[2 0 0 1 2], 0 1 0 0 3], 0 0 1 1 -1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 706.6559, ~5/4 = 376.8308

Optimal ET sequence8d, 10, 12e, 14c, 22

Badness: 0.781 × 10-3