Ditonmic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
De-canonicalize septimal ditonic. Note where the true ditone is
Sorting: move the bad extension below coditone
Line 15: Line 15:


[[Badness]]: 0.167086
[[Badness]]: 0.167086
== Diton ==
This extension is known as ''ditonic'' in [[Graham Breed]]'s temperament finder.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 126/125, 8751645/8388608
{{Mapping|legend=1| 1 6 3 -4 | 0 -13 -2 20 }}
{{Multival|legend=1| 13 2 -20 -27 -68 -52 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2625/2048 = 407.954
{{Optimal ET sequence|legend=1| 3, 47, 50 }}
[[Badness]]: 0.242101
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 126/125, 245/242, 2079/2048
Mapping: {{mapping| 1 6 3 -4 -3 | 0 -13 -2 20 19 }}
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.892
Optimal ET sequence: {{optimal ET sequence| 3, 47, 50, 53d }}
Badness: 0.100884
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 126/125, 245/242, 1287/1280
Mapping: {{mapping| 1 6 3 -4 -3 2 | 0 -13 -2 20 19 5 }}
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.887
Optimal ET sequence: {{optimal ET sequence| 3, 47, 50, 53d }}
Badness: 0.054997


== Coditone ==
== Coditone ==
Line 125: Line 82:


Badness: 0.043989
Badness: 0.043989
== Diton ==
This extension is known as ''ditonic'' in [[Graham Breed]]'s temperament finder.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 126/125, 8751645/8388608
{{Mapping|legend=1| 1 6 3 -4 | 0 -13 -2 20 }}
{{Multival|legend=1| 13 2 -20 -27 -68 -52 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2625/2048 = 407.954
{{Optimal ET sequence|legend=1| 3, 47, 50 }}
[[Badness]]: 0.242101
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 126/125, 245/242, 2079/2048
Mapping: {{mapping| 1 6 3 -4 -3 | 0 -13 -2 20 19 }}
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.892
Optimal ET sequence: {{optimal ET sequence| 3, 47, 50, 53d }}
Badness: 0.100884
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 126/125, 245/242, 1287/1280
Mapping: {{mapping| 1 6 3 -4 -3 2 | 0 -13 -2 20 19 5 }}
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.887
Optimal ET sequence: {{optimal ET sequence| 3, 47, 50, 53d }}
Badness: 0.054997


== Notes ==
== Notes ==

Revision as of 09:02, 13 March 2025

The ditonmic family of temperaments tempers out the ditonma (ratio: 1220703125/1207959552, monzo[-27 -2 13).

Ditonic

Named by Petr Pařízek in 2011[1], ditonic can be described as the 50 & 53 temperament. It splits ~8/5 in two for a generator, which happens to be an interval very close in size to the ditone, ~81/64. Note that the ditone itself is 52 generator steps away.

Subgroup: 2.3.5

Comma list: 1220703125/1207959552

Mapping[1 6 3], 0 -13 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~15625/12288 = 407.574

Optimal ET sequence3, 47, 50, 53, 474c, 527c, 580c, 633c, 686c, 739c, 792c, 845cc

Badness: 0.167086

Coditone

Subgroup: 2.3.5.7

Comma list: 225/224, 2125764/2100875

Mapping[1 6 3 13], 0 -13 -2 -30]]

Wedgie⟨⟨ 13 2 30 -27 11 64 ]]

Optimal tuning (POTE): ~2 = 1\1, ~1225/972 = 407.690

Optimal ET sequence3d, 50, 53, 103, 156

Badness: 0.064356

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 78408/78125

Mapping: [1 6 3 13 -3], 0 -13 -2 -30 19]]

Optimal tuning (POTE): ~2 = 1\1, ~1225/972 = 407.741

Optimal ET sequence: 50, 53, 103

Badness: 0.044329

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 351/350, 385/384, 847/845

Mapping: [1 6 3 13 -3 2], 0 -13 -2 -30 19 5]]

Optimal tuning (POTE): ~2 = 1\1, ~325/256 = 407.736

Optimal ET sequence: 50, 53, 103

Badness: 0.024352

Coditonic

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 6655/6561

Mapping: [1 6 3 13 15], 0 -13 -2 -30 -34]]

Optimal tuning (POTE): ~2 = 1\1, ~242/189 = 407.567

Optimal ET sequence: 3de, 50e, 53

Badness: 0.063876

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 176/175, 325/324, 847/845

Mapping: [1 6 3 13 15 20], 0 -13 -2 -30 -34 -48]]

Optimal tuning (POTE): ~2 = 1\1, ~33/26 = 407.541

Optimal ET sequence: 3def, 53

Badness: 0.043989

Diton

This extension is known as ditonic in Graham Breed's temperament finder.

Subgroup: 2.3.5.7

Comma list: 126/125, 8751645/8388608

Mapping[1 6 3 -4], 0 -13 -2 20]]

Wedgie⟨⟨ 13 2 -20 -27 -68 -52 ]]

Optimal tuning (POTE): ~2 = 1\1, ~2625/2048 = 407.954

Optimal ET sequence3, 47, 50

Badness: 0.242101

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 245/242, 2079/2048

Mapping: [1 6 3 -4 -3], 0 -13 -2 20 19]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.892

Optimal ET sequence: 3, 47, 50, 53d

Badness: 0.100884

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 126/125, 245/242, 1287/1280

Mapping: [1 6 3 -4 -3 2], 0 -13 -2 20 19 5]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 407.887

Optimal ET sequence: 3, 47, 50, 53d

Badness: 0.054997

Notes