Lumatone mapping for 51edo: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
There are many conceivable ways to map [[51edo]] onto the [[Lumatone]] keyboard. Unfortunately, as it has multiple rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. You can use the b val, which can be interpreted as either [[mavila]] or [[undecimation]], but is not a particularly great tuning for either. | There are many conceivable ways to map [[51edo]] onto the [[Lumatone]] keyboard. Unfortunately, as it has multiple rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. You can use the b val, which can be interpreted as either [[mavila]] or [[undecimation]], but is not a particularly great tuning for either. | ||
{{Lumatone EDO mapping|n=51|start=33|xstep=7|ystep=1}} | {{Lumatone EDO mapping|n=51|start=33|xstep=7|ystep=1}} | ||
Instead, it is probably better to use one of the mappings that reaches the perfect 5th in three generator steps. Of these, the [[slendric]] mapping has the greater range. | Instead, it is probably better to use one of the mappings that reaches the perfect 5th in three generator steps. Of these, the [[slendric]] mapping has the greater range. | ||
{{Lumatone EDO mapping|n=51|start=24|xstep=10|ystep=-9}} | {{Lumatone EDO mapping|n=51|start=24|xstep=10|ystep=-9}} | ||
However, the [[porky]] mapping is probably more intuitive to people used to using a heptatonic scale and simple 5-limit ratios in chords. | However, the [[porky]] mapping is probably more intuitive to people used to using a heptatonic scale and simple 5-limit ratios in chords. | ||
{{Lumatone EDO mapping|n=51|start=18|xstep=7|ystep=2}} | {{Lumatone EDO mapping|n=51|start=18|xstep=7|ystep=2}} | ||
{{Lumatone | {{Navbox Lumatone}} |
Revision as of 16:55, 11 February 2025
There are many conceivable ways to map 51edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which can be interpreted as either mavila or undecimation, but is not a particularly great tuning for either.

33
40
41
48
4
11
18
42
49
5
12
19
26
33
40
50
6
13
20
27
34
41
48
4
11
18
0
7
14
21
28
35
42
49
5
12
19
26
33
40
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
4
11
18
25
32
39
46
2
9
16
23
30
37
44
33
40
47
3
10
17
24
31
38
45
1
4
11
18
25
32
39
46
2
33
40
47
3
10
4
11
Instead, it is probably better to use one of the mappings that reaches the perfect 5th in three generator steps. Of these, the slendric mapping has the greater range.

24
34
25
35
45
4
14
16
26
36
46
5
15
25
35
17
27
37
47
6
16
26
36
46
5
15
8
18
28
38
48
7
17
27
37
47
6
16
26
36
9
19
29
39
49
8
18
28
38
48
7
17
27
37
47
6
16
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
27
37
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
5
15
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
26
36
46
5
15
25
35
45
4
14
24
34
44
3
6
16
26
36
46
5
15
25
35
45
4
27
37
47
6
16
26
36
46
7
17
27
37
47
28
38
However, the porky mapping is probably more intuitive to people used to using a heptatonic scale and simple 5-limit ratios in chords.

18
25
27
34
41
48
4
29
36
43
50
6
13
20
27
38
45
1
8
15
22
29
36
43
50
6
40
47
3
10
17
24
31
38
45
1
8
15
22
29
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
3
10
17
24
31
38
45
1
8
15
22
29
36
43
33
40
47
3
10
17
24
31
38
45
1
5
12
19
26
33
40
47
3
35
42
49
5
12
7
14