6edf: Difference between revisions
Jump to navigation
Jump to search
-irrelevant shit |
Adopt template: ED intro; +harmonics table; misc. cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} It corresponds to 10.2571 [[edo]]. | |||
== Theory == | |||
6edf is related to the [[miracle]] temperament, which [[tempering out|tempers out]] [[225/224]] and [[1029/1024]] in the 7-limit. | |||
=== Harmonics === | |||
{{Harmonics in equal|6|3|2}} | |||
== Intervals == | == Intervals == | ||
Line 137: | Line 143: | ||
|} | |} | ||
== | == Music == | ||
* [http://www.seraph.it/dep/det/metashakti.mp3 Metashakti] | ; [[Carlo Serafini]] | ||
* [https://youtu.be/OSQljL4ANf8 | * [http://www.seraph.it/dep/det/metashakti.mp3 ''Metashakti''] | ||
; [[XэнкøрX]] | |||
* [https://youtu.be/OSQljL4ANf8 "The Blame Game"] from ''State of the World (XLP)'' (2023) | |||
[[Category:Listen]] | [[Category:Listen]] |
Revision as of 06:30, 10 May 2024
← 5edf | 6edf | 7edf → |
6 equal divisions of the perfect fifth (abbreviated 6edf or 6ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 6 equal parts of about 117 ¢ each. Each step represents a frequency ratio of (3/2)1/6, or the 6th root of 3/2. It corresponds to 10.2571 edo.
Theory
6edf is related to the miracle temperament, which tempers out 225/224 and 1029/1024 in the 7-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -30.1 | -30.1 | +56.8 | +21.5 | +56.8 | +24.0 | +26.8 | +56.8 | -8.6 | -56.6 | +26.8 |
Relative (%) | -25.7 | -25.7 | +48.6 | +18.4 | +48.6 | +20.5 | +22.9 | +48.6 | -7.3 | -48.4 | +22.9 | |
Steps (reduced) |
10 (4) |
16 (4) |
21 (3) |
24 (0) |
27 (3) |
29 (5) |
31 (1) |
33 (3) |
34 (4) |
35 (5) |
37 (1) |
Intervals
degrees | cents ~ cents octave-reduced | approximate ratios | Neptunian notation |
---|---|---|---|
0 | 0 (perfect unison, 1:1) | 1/1 | C |
1 | 117 | 16/15, 15/14 | C# |
2 | 234 | 8/7 | Db |
3 | 351 | 11/9, 27/22 | D |
4 | 468 | 21/16 | E |
5 | 585 | 7/5, 45/32 | F |
6 | 702 (just perfect fifth, 3:2) | 3/2 | C |
7 | 819 | 8/5, 21/13 | C# |
8 | 936 | 12/7, 55/32 | Db |
9 | 1053 | 11/6 | D |
10 | 1170 | 49/25, 160/81, 2/1 | E |
11 | 1287 ~ 87 | F | |
12 | 1404 ~ 204 (just major whole tone/ninth, 9:4) | C | |
13 | 1521 ~ 321 | C# | |
14 | 1638 ~ 438 | Db | |
15 | 1755 ~ 555 | D | |
16 | 1872 ~ 672 | E | |
17 | 1988 ~ 788 | F | |
18 | 2106 ~ 906 (Pythagorean major sixth, 27:8) | C | |
19 | 2223 ~ 1023 | C# | |
20 | 2340 ~ 1140 | Db | |
21 | 2457 ~ 57 | D | |
22 | 2574 ~ 174 | E | |
23 | 2691 ~ 291 | F | |
24 | 2808 ~ 408 (Pythagorean major third, 81:16) | C |
Music
- "The Blame Game" from State of the World (XLP) (2023)