14edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Moremajorthanmajor (talk | contribs)
No edit summary
-irrelevant shit
Line 96: Line 96:
|1403.91
|1403.91
|}
|}
==Scale tree==
If 4\7 (four degrees of 7EDO) is at one extreme and 3\5 (three degrees of 5EDO) is at the other, all other possible 5L 2s scales exist in a continuum between them. You can chop this continuum up by taking [[Mediant|"freshman sums"]] of the two edges - adding together the numerators, then adding together the denominators (i.e. adding them together as if you would be adding the complex numbers analogous real and imaginary parts). Thus, between 4\7 and 3\5 you have (4+3)\(7+5) = 7\12, seven degrees of 12EDO.
If we carry this freshman-summing out a little further, new, larger [[EDO]]s pop up in our continuum.
Generator range: 48.97959 cents (4\7/14 = 2\49) to 51.42857 cents (3\5/14 = 3\70)
{| class="wikitable center-all"
! colspan="7" |Fifth
!Cents
!Comments
|-
|4\7|| || || || || || ||48.9796
|
|-
| || || || || || ||27\47||49.2401||
|-
| || || || || ||23\40|| ||49.2857||
|-
| || || || || || ||42\73||49.3151||
|-
| || || || ||19\33|| || ||49.35065||
|-
| || || || || || ||53\92||49.3789||
|-
| || || || || ||34\59|| ||49.3947||
|-
| || || || || || ||49\85||49.4118||
|-
| || || ||15\26|| || || ||49.45055||
|-
| || || || || || ||56\97||49.4845||
|-
| || || || || ||41\71|| ||49.4970||
|-
| || || || || || ||67\116||49.5074||
|-
| || || || ||26\45|| || ||49.5238||[[Flattone]] is in this region
|-
| || || || || || ||63\109||49.5413||
|-
| || || || || ||37\64|| ||49.5535||
|-
| || || || || || ||48\83||49.5697||
|-
| || ||11\19|| || || || ||49.6241||
|-
| || || || || || ||51\88||49.6753||
|-
| || || || || ||40\69|| ||49.6894||
|-
| || || || || || ||69\119||49.6999||
|-
| || || || ||29\50|| || ||49.7143||
|-
| || || || || || ||76\131||49.7274||[[Golden meantone]] (696.2145¢)
|-
| || || || || ||47\81|| ||49.73545||
|-
| || || || || || ||65\112||49.7449||
|-
| || || ||18\31|| || || ||49.7696||[[Meantone]] is in this region
|-
| || || || || || ||61\105||49.7959||
|-
| || || || || ||43\74|| ||49.8070||The generator closest to a just [[4/3]] for EDOs less than 2800
|-
| || || || || || ||68\117||49.81685||
|-
| || || || ||25\43|| || ||49.8339||
|-
| || || || || || ||57\98||49.8542||
|-
| || || || || ||32\55|| ||49.8701||
|-
| || || || || || ||39\67||49.8934||
|-
| ||7\12|| || || || || ||50.0000||
|-
| || || || || || ||38\65||50.1099||
|-
| || || || || ||31\53|| ||50.1348||The fifth closest to a just [[3/2]] for EDOs less than 200
|-
| || || || || || ||55\94||50.1520||[[Garibaldi]] / [[Cassandra]]
|-
| || || || ||24\41|| || ||50.1742||
|-
| || || || || || ||65\111||50.19305||
|-
| || || || || ||41\70|| ||50.2041||
|-
| || || || || || ||58\99||50.21645||
|-
| || || ||17\29|| || || ||50.2463||
|-
| || || || || || ||61\104||50.2747||
|-
| || || || || ||44\75|| ||50.2857||
|-
| || || || || || ||71\121||50.2952||Golden neogothic (704.0956¢)
|-
| || || || ||27\46|| || ||50.3106||[[Neogothic]] is in this region
|-
| || || || || || ||64\109||50.32765||
|-
| || || || || ||37\63|| ||50.3401||
|-
| || || || || || ||47\80||50.3571||
|-
| || ||10\17|| || || || ||50.4202||
|-
| || || || || || ||43\73||50.4892||
|-
| || || || || ||33\56|| ||50.5102||
|-
| || || || || || ||56\95||50.5263||
|-
| || || || ||23\39|| || ||50.54945||
|-
| || || || || || ||59\100||50.5714||
|-
| || || || || ||36\61|| ||50.5855||
|-
| || || || || || ||49\83||50.6024||
|-
| || || ||13\22|| || || ||50.64935||[[Archy]] is in this region
|-
| || || || || || ||42\71||50.7042||
|-
| || || || || ||29\49|| ||50.7289||
|-
| || || || || || ||45\76||50.7519||
|-
| || || || ||16\27|| || ||50.79365||
|-
| || || || || || ||35\59||50.8475||
|-
| || || || || ||19\32|| ||50.8929||
|-
| || || || || || ||22\37||50.96525||
|-
|3\5|| || || || || || ||51.4286||
|}Tunings above 7\12 on this chart are called "negative tunings" (as they lessen the size of the fifth) and include meantone systems such as 1/3-comma (close to 11\19) and 1/4-comma (close to 18\31). As these tunings approach 4\7, the majors become flatter and the minors become sharper.
[[Category:Edf]]
[[Category:Edonoi]]
[[Category:todo:improve synopsis]]

Revision as of 13:21, 7 May 2024

← 13edf 14edf 15edf →
Prime factorization 2 × 7
Step size 50.1396 ¢ 
Octave 24\14edf (1203.35 ¢) (→ 12\7edf)
Twelfth 38\14edf (1905.31 ¢) (→ 19\7edf)
Consistency limit 6
Distinct consistency limit 6

Division of the just perfect fifth into 14 equal parts (14EDF) is related to 24 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 50.1396 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.

Lookalikes: 24edo, 38edt

Intervals

Degree
0 0
1 50.1396
2 100.2793
3 150.4189
4 200.5586
5 250.6982
6 300.8379
7 350.9775
8 401.1171
9 451.2568
10 501.3964
11 551.536
12 601.6757
13 651.8154
14 701.955
15 752.0946
16 802.2343
17 852.3739
18 902.5136
19 952.6532
20 1002.7929
21 1052.9235
22 1103.0721
23 1153.2118
24 1203.3514
25 1253.4911
26 1303.6307
27 1353.7704
28 1403.91