53edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
Francium (talk | contribs)
mNo edit summary
Line 10: Line 10:
Mapping: [<1 1 0 0|, <0 53 0 44|, <0 0 1 1|]
Mapping: [<1 1 0 0|, <0 53 0 44|, <0 0 1 1|]


EDOs: 90, 91, 181, 453, 544, 634, 725, 997, 1087, 1178
EDOs: {{EDOs|90, 91, 181, 453, 544, 634, 725, 997, 1087, 1178}}


===7-limit 453&1178===
===7-limit 453&1178===
Line 19: Line 19:
Mapping: [<1 1 -1 -1|, <0 53 301 345|]
Mapping: [<1 1 -1 -1|, <0 53 301 345|]


EDOs: 453, 725, 1178, 1631, 2084, 2809
EDOs: {{EDOs|453, 725, 1178, 1631, 2084, 2809}}


[[Category:Edf]]
[[Category:Edf]]
[[Category:Edonoi]]
[[Category:Edonoi]]

Revision as of 17:12, 27 November 2023

← 52edf 53edf 54edf →
Prime factorization 53 (prime)
Step size 13.2444 ¢ 
Octave 91\53edf (1205.24 ¢)
Twelfth 144\53edf (1907.2 ¢)
Consistency limit 3
Distinct consistency limit 3

53EDF is the equal division of the just perfect fifth into 53 parts of 13.2444 cents each, corresponding to 90.6041 edo (similar to every fifth step of 453edo). It is related to the regular temperament which tempers out |-44 44 53 -53> in the 7-limit, which is supported by 90, 91, 181, 453, 544, 634, 725, 997, 1087, and 1178 EDOs.

Related temperament

7-limit 453&544&634

Comma: |-44 44 53 -53>

POTE generators: ~5/4 = 386.2004, ~3796875/3764768 = 13.2434

Mapping: [<1 1 0 0|, <0 53 0 44|, <0 0 1 1|]

EDOs: 90, 91, 181, 453, 544, 634, 725, 997, 1087, 1178

7-limit 453&1178

Commas: 2460375/2458624, |6 -1 38 -33>

POTE generator: ~3796875/3764768 = 13.2432

Mapping: [<1 1 -1 -1|, <0 53 301 345|]

EDOs: 453, 725, 1178, 1631, 2084, 2809