354edo: Difference between revisions
m →Theory: quality of higher harmonics |
Rework; cleanup; clarify the title row of the rank-2 temp table |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by tempering out the [[schisma]] and the [[parakleisma]], but the approximation to higher | 354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by [[tempering out]] the [[schisma]] and the [[parakleisma]], but the approximation to higher [[harmonic]]s are much improved. In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 ([[landscape comma]]), and 703125/702464 ([[meter]]); in the 11-limit, [[540/539]], and [[4000/3993]]; in the 13-limit, [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]]. It provides the [[optimal patent val]] for [[stearnscape]], the 72 & 282 temperament, and 13- and 17-limit [[terminator]], the 171 & 183 temperament. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 354 factors into | Since 354 factors into {{factorization|354}}, 354edo has subset edos {{EDOs| 2, 3, 6, 59, 118, and 177 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 24: | Line 24: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 32805/32768, 118098/117649, 250047/250000 | | 32805/32768, 118098/117649, 250047/250000 | ||
| | | {{mapping| 354 561 822 994 }} | ||
| -0.0319 | | -0.0319 | ||
| 0.1432 | | 0.1432 | ||
Line 31: | Line 31: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 540/539, 4000/3993, 32805/32768, 137781/137500 | | 540/539, 4000/3993, 32805/32768, 137781/137500 | ||
| | | {{mapping| 354 561 822 994 1225 }} | ||
| -0.0963 | | -0.0963 | ||
| 0.1817 | | 0.1817 | ||
Line 38: | Line 38: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | | 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | ||
| | | {{mapping| 354 561 822 994 1225 1310 }} | ||
| -0.0871 | | -0.0871 | ||
| 0.1671 | | 0.1671 | ||
Line 45: | Line 45: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | ||
| | | {{mapping| 354 561 822 994 1225 1310 1447 }} | ||
| -0.0791 | | -0.0791 | ||
| 0.1559 | | 0.1559 | ||
Line 52: | Line 52: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | | 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | ||
| | | {{mapping| 354 561 822 994 1225 1310 1447 1504 }} | ||
| -0.0926 | | -0.0926 | ||
| 0.1509 | | 0.1509 | ||
Line 64: | Line 64: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>Ratio | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 79: | Line 79: | ||
| 498.31<br>(98.31) | | 498.31<br>(98.31) | ||
| 4/3<br>(18/17) | | 4/3<br>(18/17) | ||
| [[Term]] / terminator | | [[Term (temperament)|Term]] / terminator | ||
|- | |- | ||
| 6 | | 6 | ||
Line 99: | Line 99: | ||
| [[Oganesson]] | | [[Oganesson]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
[[Category:Stearnscape]] |
Revision as of 10:14, 10 November 2023
← 353edo | 354edo | 355edo → |
Theory
354edo is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma, but the approximation to higher harmonics are much improved. In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 (landscape comma), and 703125/702464 (meter); in the 11-limit, 540/539, and 4000/3993; in the 13-limit, 729/728, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224. It provides the optimal patent val for stearnscape, the 72 & 282 temperament, and 13- and 17-limit terminator, the 171 & 183 temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.13 | +0.67 | +1.22 | +0.15 | +0.13 | +0.79 | -1.16 | +0.93 | +0.73 |
Relative (%) | +0.0 | -7.7 | +3.7 | +19.6 | +36.1 | +4.4 | +3.8 | +23.4 | -34.1 | +27.5 | +21.5 | |
Steps (reduced) |
354 (0) |
561 (207) |
822 (114) |
994 (286) |
1225 (163) |
1310 (248) |
1447 (31) |
1504 (88) |
1601 (185) |
1720 (304) |
1754 (338) |
Subsets and supersets
Since 354 factors into 2 × 3 × 59, 354edo has subset edos 2, 3, 6, 59, 118, and 177.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 32805/32768, 118098/117649, 250047/250000 | [⟨354 561 822 994]] | -0.0319 | 0.1432 | 4.23 |
2.3.5.7.11 | 540/539, 4000/3993, 32805/32768, 137781/137500 | [⟨354 561 822 994 1225]] | -0.0963 | 0.1817 | 5.36 |
2.3.5.7.11.13 | 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | [⟨354 561 822 994 1225 1310]] | -0.0871 | 0.1671 | 4.93 |
2.3.5.7.11.13.17 | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | [⟨354 561 822 994 1225 1310 1447]] | -0.0791 | 0.1559 | 4.60 |
2.3.5.7.11.13.17.19 | 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | [⟨354 561 822 994 1225 1310 1447 1504]] | -0.0926 | 0.1509 | 4.43 |
Rank-2 temperaments
Note: 5-limit temperaments supported by 118et are not included.
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
2 | 128\354 (49\354) |
433.90 (166.10) |
9/7 (11/10) |
Pogo |
3 | 147\354 (29\354) |
498.31 (98.31) |
4/3 (18/17) |
Term / terminator |
6 | 64\354 (5\354) |
216.95 (16.95) |
567/500 (245/243) |
Stearnscape |
6 | 147\354 (29\354) |
498.31 (98.31) |
4/3 (18/17) |
Semiterm |
118 | 167\354 (2\354) |
566.101 (6.78) |
165/119 (?) |
Oganesson |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct