354edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Theory: quality of higher harmonics
Rework; cleanup; clarify the title row of the rank-2 temp table
Line 3: Line 3:


== Theory ==
== Theory ==
354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by tempering out the [[schisma]] and the [[parakleisma]], but the approximation to higher harmonics are much improved. In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 ([[landscape comma|landscape]]), and 703125/702464 ([[meter]]); in the 11-limit, [[540/539]], and [[4000/3993]]; in the 13-limit, [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]]. It provides the [[optimal patent val]] for [[stearnscape]].  
354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by [[tempering out]] the [[schisma]] and the [[parakleisma]], but the approximation to higher [[harmonic]]s are much improved. In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 ([[landscape comma]]), and 703125/702464 ([[meter]]); in the 11-limit, [[540/539]], and [[4000/3993]]; in the 13-limit, [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]]. It provides the [[optimal patent val]] for [[stearnscape]], the 72 & 282 temperament, and 13- and 17-limit [[terminator]], the 171 & 183 temperament.  


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 354 factors into 2 × 3 × 59, 354edo has subset edos {{EDOs| 2, 3, 6, 59, 118, and 177 }}.
Since 354 factors into {{factorization|354}}, 354edo has subset edos {{EDOs| 2, 3, 6, 59, 118, and 177 }}.


== Regular temperament properties ==
== Regular temperament properties ==
Line 24: Line 24:
| 2.3.5.7
| 2.3.5.7
| 32805/32768, 118098/117649, 250047/250000
| 32805/32768, 118098/117649, 250047/250000
| [{{val| 354 561 822 994 }}]
| {{mapping| 354 561 822 994 }}
| -0.0319
| -0.0319
| 0.1432
| 0.1432
Line 31: Line 31:
| 2.3.5.7.11
| 2.3.5.7.11
| 540/539, 4000/3993, 32805/32768, 137781/137500
| 540/539, 4000/3993, 32805/32768, 137781/137500
| [{{val| 354 561 822 994 1225 }}]
| {{mapping| 354 561 822 994 1225 }}
| -0.0963
| -0.0963
| 0.1817
| 0.1817
Line 38: Line 38:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213
| 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213
| [{{val| 354 561 822 994 1225 1310 }}]
| {{mapping| 354 561 822 994 1225 1310 }}
| -0.0871
| -0.0871
| 0.1671
| 0.1671
Line 45: Line 45:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095
| [{{val| 354 561 822 994 1225 1310 1447 }}]
| {{mapping| 354 561 822 994 1225 1310 1447 }}
| -0.0791
| -0.0791
| 0.1559
| 0.1559
Line 52: Line 52:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520
| 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520
| [{{val| 354 561 822 994 1225 1310 1447 1504 }}]
| {{mapping| 354 561 822 994 1225 1310 1447 1504 }}
| -0.0926
| -0.0926
| 0.1509
| 0.1509
Line 64: Line 64:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 79: Line 79:
| 498.31<br>(98.31)
| 498.31<br>(98.31)
| 4/3<br>(18/17)
| 4/3<br>(18/17)
| [[Term]] / terminator
| [[Term (temperament)|Term]] / terminator
|-
|-
| 6
| 6
Line 99: Line 99:
| [[Oganesson]]
| [[Oganesson]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
[[Category:Stearnscape]]

Revision as of 10:14, 10 November 2023

← 353edo 354edo 355edo →
Prime factorization 2 × 3 × 59
Step size 3.38983 ¢ 
Fifth 207\354 (701.695 ¢) (→ 69\118)
Semitones (A1:m2) 33:27 (111.9 ¢ : 91.53 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

354edo is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma, but the approximation to higher harmonics are much improved. In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 (landscape comma), and 703125/702464 (meter); in the 11-limit, 540/539, and 4000/3993; in the 13-limit, 729/728, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224. It provides the optimal patent val for stearnscape, the 72 & 282 temperament, and 13- and 17-limit terminator, the 171 & 183 temperament.

Prime harmonics

Approximation of prime harmonics in 354edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.26 +0.13 +0.67 +1.22 +0.15 +0.13 +0.79 -1.16 +0.93 +0.73
Relative (%) +0.0 -7.7 +3.7 +19.6 +36.1 +4.4 +3.8 +23.4 -34.1 +27.5 +21.5
Steps
(reduced)
354
(0)
561
(207)
822
(114)
994
(286)
1225
(163)
1310
(248)
1447
(31)
1504
(88)
1601
(185)
1720
(304)
1754
(338)

Subsets and supersets

Since 354 factors into 2 × 3 × 59, 354edo has subset edos 2, 3, 6, 59, 118, and 177.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5.7 32805/32768, 118098/117649, 250047/250000 [354 561 822 994]] -0.0319 0.1432 4.23
2.3.5.7.11 540/539, 4000/3993, 32805/32768, 137781/137500 [354 561 822 994 1225]] -0.0963 0.1817 5.36
2.3.5.7.11.13 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 [354 561 822 994 1225 1310]] -0.0871 0.1671 4.93
2.3.5.7.11.13.17 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 [354 561 822 994 1225 1310 1447]] -0.0791 0.1559 4.60
2.3.5.7.11.13.17.19 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 [354 561 822 994 1225 1310 1447 1504]] -0.0926 0.1509 4.43

Rank-2 temperaments

Note: 5-limit temperaments supported by 118et are not included.

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
2 128\354
(49\354)
433.90
(166.10)
9/7
(11/10)
Pogo
3 147\354
(29\354)
498.31
(98.31)
4/3
(18/17)
Term / terminator
6 64\354
(5\354)
216.95
(16.95)
567/500
(245/243)
Stearnscape
6 147\354
(29\354)
498.31
(98.31)
4/3
(18/17)
Semiterm
118 167\354
(2\354)
566.101
(6.78)
165/119
(?)
Oganesson

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct