1106edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Clarify the title row of the rank-2 temp table
Adopt template: Factorization; misc. cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
1106edo is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13- and 17-limit, but even so is distinctly [[consistent]] through the [[17-odd-limit]].  
1106edo is a [[zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13- and 17-limit, but even so is [[consistency|distinctly consistent]] through the [[17-odd-limit]].  


It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In the higher limits, it supports the 79th-octave temperament [[gold]].
It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In the higher limits, it supports the 79th-octave temperament [[gold]].
Line 11: Line 11:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 1106 factors into 2 × 7 × 79, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}.
Since 1106 factors into {{factorization|1106}}, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}.


== Regular temperament properties ==
== Regular temperament properties ==
Line 26: Line 26:
| 2.3
| 2.3
| {{monzo| 1753 -1106 }}
| {{monzo| 1753 -1106 }}
| {{val| 1106 1753 }}
| {{mapping| 1106 1753 }}
| -0.010
| -0.010
| 0.010
| 0.010
Line 33: Line 33:
| 2.3.5
| 2.3.5
| {{monzo| -53 10 16 }}, {{monzo| 40 -56 21 }}
| {{monzo| -53 10 16 }}, {{monzo| 40 -56 21 }}
| {{val| 1106 1753 2568 }}
| {{mapping| 1106 1753 2568 }}
| +0.001
| +0.001
| 0.019
| 0.019
Line 40: Line 40:
| 2.3.5.7
| 2.3.5.7
| 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }}
| 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }}
| {{val| 1106 1753 2568 3105 }}
| {{mapping| 1106 1753 2568 3105 }}
| -0.006
| -0.006
| 0.020
| 0.020
Line 47: Line 47:
| 2.3.5.7.11
| 2.3.5.7.11
| 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041
| 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041
| {{val| 1106 1753 2568 3105 3826 }}
| {{mapping| 1106 1753 2568 3105 3826 }}
| +0.004
| +0.004
| 0.026
| 0.026
Line 54: Line 54:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625
| {{val| 1106 1753 2568 3105 3826 4093 }}
| {{mapping| 1106 1753 2568 3105 3826 4093 }}
| -0.012
| -0.012
| 0.043
| 0.043
Line 61: Line 61:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619
| {{val| 1106 1753 2568 3105 3826 4093 4521 }}
| {{mapping| 1106 1753 2568 3105 3826 4093 4521 }}
| -0.021
| -0.021
| 0.045
| 0.045
Line 69: Line 69:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-

Revision as of 10:29, 31 October 2023

← 1105edo 1106edo 1107edo →
Prime factorization 2 × 7 × 79
Step size 1.08499 ¢ 
Fifth 647\1106 (701.989 ¢)
Semitones (A1:m2) 105:83 (113.9 ¢ : 90.05 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

1106edo is a zeta peak edo. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit relative error being 171, 270, 342, 441 and 612. It is even stronger in the 11-limit; the only ones beating it out now being 270, 342 and 612. It is less strong in the 13- and 17-limit, but even so is distinctly consistent through the 17-odd-limit.

It notably supports supermajor, brahmagupta, and orga in the 7-limit, and notably semisupermajor in the 11-limit. In the higher limits, it supports the 79th-octave temperament gold.

Prime harmonics

Approximation of prime harmonics in 1106edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000 +0.034 -0.057 +0.071 -0.143 +0.340 +0.289 -0.225 -0.065 +0.079 -0.370 +0.374
Relative (%) +0.0 +3.1 -5.2 +6.5 -13.1 +31.4 +26.6 -20.8 -6.0 +7.3 -34.1 +34.5
Steps
(reduced)
1106
(0)
1753
(647)
2568
(356)
3105
(893)
3826
(508)
4093
(775)
4521
(97)
4698
(274)
5003
(579)
5373
(949)
5479
(1055)
5762
(232)

Subsets and supersets

Since 1106 factors into 2 × 7 × 79, it has subset edos 2, 7, 14, 79, 158, and 553.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [1753 -1106 [1106 1753]] -0.010 0.010 0.99
2.3.5 [-53 10 16, [40 -56 21 [1106 1753 2568]] +0.001 0.019 1.73
2.3.5.7 4375/4374, 52734375/52706752, [46 -14 -3 -6 [1106 1753 2568 3105]] -0.006 0.020 1.83
2.3.5.7.11 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 [1106 1753 2568 3105 3826]] +0.004 0.026 2.38
2.3.5.7.11.13 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625 [1106 1753 2568 3105 3826 4093]] -0.012 0.043 3.94
2.3.5.7.11.13.17 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619 [1106 1753 2568 3105 3826 4093 4521]] -0.021 0.045 4.11

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 213\1106 231.103 8/7 Orga (11-limit)
1 401\1106 435.081 9/7 Supermajor
2 401\1106
(152\1106)
435.081
(164.919)
9/7
(11/10)
Semisupermajor
7 479\1106
(5\1106)
519.711
(5.424)
27/20
(5120/5103)
Brahmagupta (7-limit)
79 459\1106
(11\1106)
498.011
(11.935)
4/3
(?)
Gold

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct