321edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Added music
Adopt template: EDO intro; +prime error table; sectioning and linking; -redundant categories
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The 321 equal division divides the octave into 321 equal parts of 3.738 cents each. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths temperament. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845 and 2080/2079,  providing the [[Optimal_patent_val|optimal patent val]] for 11- and 13-limit [[Hemifamity_family#Akea|akea temperament]].
{{EDO intro|321}}
 
== Theory ==
321edo is in[[consistent]] in the [[5-odd-limit]]. The [[patent val]] [[Tempering out|tempers out]] [[2401/2400]], [[5120/5103]] and [[10976/10935]] in the 7-limit, supporting [[hemififths]]. In the 11-limit it tempers out [[385/384]] and 1375/1372, and in the 13-limit [[325/324]], [[352/351]], [[847/845]] and [[2080/2079]],  providing the [[optimal patent val]] for 11- and 13-limit [[akea]] temperament.
 
=== Prime harmonics ===
{{Harmonics in equal|321}}


== Music ==
== Music ==
; JUMBLE
; [[JUMBLE]]
* [https://www.youtube.com/watch?v=4HT5onKQaz0 ''Sun Through The Window''] (2023)
* [https://www.youtube.com/watch?v=4HT5onKQaz0 ''Sun Through The Window''] (2023)
* [https://www.youtube.com/watch?v=cQoWVBbKnuA ''BLASTOFF!''] (2023)
* [https://www.youtube.com/watch?v=cQoWVBbKnuA ''BLASTOFF!''] (2023)
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 03:43, 15 September 2023

← 320edo 321edo 322edo →
Prime factorization 3 × 107
Step size 3.73832 ¢ 
Fifth 188\321 (702.804 ¢)
Semitones (A1:m2) 32:23 (119.6 ¢ : 85.98 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

321edo is inconsistent in the 5-odd-limit. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845 and 2080/2079, providing the optimal patent val for 11- and 13-limit akea temperament.

Prime harmonics

Approximation of prime harmonics in 321edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.85 -1.27 -0.60 -1.79 +0.59 -0.28 +1.55 -0.24 -1.54 -1.11
Relative (%) +0.0 +22.7 -33.9 -16.1 -47.8 +15.9 -7.6 +41.5 -6.3 -41.2 -29.7
Steps
(reduced)
321
(0)
509
(188)
745
(103)
901
(259)
1110
(147)
1188
(225)
1312
(28)
1364
(80)
1452
(168)
1559
(275)
1590
(306)

Music

JUMBLE