7L 2s: Difference between revisions
Removed redundant intro text |
mNo edit summary |
||
Line 10: | Line 10: | ||
{{MOS intro}} | {{MOS intro}} | ||
== Name == | == Name == | ||
The [[TAMNAMS]] name for this pattern is '''superdiatonic''', in reference to the diatonic mos (5L 2s) having two additional large steps added, or '''armotonic''', in reference to Armodue theory. | The [[TAMNAMS]] name for this pattern is '''superdiatonic''', in reference to the diatonic mos (5L 2s) having two additional large steps added, or '''armotonic''', in reference to Armodue theory. |
Revision as of 05:26, 1 June 2023
↖ 6L 1s | ↑ 7L 1s | 8L 1s ↗ |
← 6L 2s | 7L 2s | 8L 2s → |
↙ 6L 3s | ↓ 7L 3s | 8L 3s ↘ |
┌╥╥╥╥┬╥╥╥┬┐ │║║║║│║║║││ │││││││││││ └┴┴┴┴┴┴┴┴┴┘
sLLLsLLLL
7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢.
Name
The TAMNAMS name for this pattern is superdiatonic, in reference to the diatonic mos (5L 2s) having two additional large steps added, or armotonic, in reference to Armodue theory.
Temperaments
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mavila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
These scales are strongly associated with the Armodue project/system applied to septimal mavila and Hornbostel temperaments.
Intervals
Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". TAMNAMS discourages 1-indexed terms such as "mos(k+1)th" for non-diatonic mosses.
Modes
- 8|0 LLLLsLLLs "Superlydian"
- 7|1 LLLsLLLLs "Superionian"
- 6|2 LLLsLLLsL "Supermixolydian"
- 5|3 LLsLLLLsL "Supercorinthian"
- 4|4 LLsLLLsLL "Superolympian"
- 3|5 LsLLLLsLL "Superdorian"
- 2|6 LsLLLsLLL "Superaeolian"
- 1|7 sLLLLsLLL "Superphrygian"
- 0|8 sLLLsLLLL "Superlocrian"
Scale tree
Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
Generator ranges:
- Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7)
- Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9)
Generator | Generator size (cents) | Pentachord steps | Comments | ||
---|---|---|---|---|---|
4\7 | 685.714 | 1 1 1 0 | |||
53\93 | 683.871 | 13 13 13 1 | |||
102\179 | 683.798 | 25 25 25 2 | Approximately 0.03 cents away from 95/64 | ||
49\86 | 683.721 | 12 12 12 1 | |||
94\165 | 683.636 | 23 23 23 2 | |||
45\79 | 683.544 | 11 11 11 1 | |||
86\151 | 683.444 | 21 21 21 2 | |||
41\72 | 683.333 | 10 10 10 1 | |||
78\137 | 683.212 | 19 19 19 2 | |||
37\65 | 683.077 | 9 9 9 1 | |||
70\123 | 682.927 | 17 17 17 2 | |||
33\58 | 682.758 | 8 8 8 1 | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
62\109 | 682.569 | 15 15 15 2 | |||
29\51 | 682.353 | 7 7 7 1 | |||
54\95 | 682.105 | 13 13 13 2 | |||
25\44 | 681.818 | 6 6 6 1 | |||
46\81 | 681.4815 | 11 11 11 2 | |||
21\37 | 681.081 | 5 5 5 1 | |||
59\104 | 680.769 | 14 14 14 3 | |||
38\67 | 680.597 | 9 9 9 2 | |||
55\97 | 680.412 | 13 13 13 3 | |||
17\30 | 680 | 4 4 4 1 | L/s = 4 | ||
47\83 | 679.518 | 11 11 11 3 | |||
30\53 | 679.245 | 7 7 7 2 | |||
43\76 | 678.947 | 10 10 10 3 | |||
56\99 | 678.788 | 13 13 13 4 | |||
69\122 | 678.6885 | 16 16 16 5 | |||
82\145 | 678.621 | 19 19 19 6 | |||
95\168 | 678.571 | 22 22 22 7 | |||
678.569 | π π π 1 | L/s = π | |||
108\191 | 678.534 | 25 25 25 8 | |||
121\214 | 678.505 | 28 28 28 9 | 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth) | ||
134\237 | 678.481 | 31 31 31 10 | HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th') | ||
13\23 | 678.261 | 3 3 3 1 | HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone) | ||
126\223 | 678.027 | 29 29 29 10 | HORNBOSTEL TEMPERAMENT
(Armodue 1/29-tone) | ||
113\200 | 678 | 26 26 26 9 | HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8') | ||
100\177 | 677.966 | 23 23 23 8 | |||
87\154 | 677.922 | 20 20 20 7 | |||
74\131 | 677.863 | 17 17 17 6 | Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments) | ||
61\108 | 677.778 | 14 14 14 5 | Armodue-Hornbostel 1/14-tone | ||
109\193 | 677.720 | 25 25 25 9 | Armodue-Hornbostel 1/25-tone | ||
48\85 | 677.647 | 11 11 11 4 | Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7') | ||
677.562 | e e e 1 | L/s = e | |||
35\62 | 677.419 | 8 8 8 3 | Armodue-Hornbostel 1/8-tone | ||
92\163 | 677.301 | 21 21 21 8 | 21;8 Superdiatonic 1/21-tone | ||
677.28 | φ+1 φ+1 φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 677.228 | 13 13 13 5 | 13;5 Superdiatonic 1/13-tone | ||
22\39 | 676.923 | 5 5 5 2 | Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th') | ||
75\133 | 676.692 | 17 17 17 7 | 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents) | ||
53\94 | 676.596 | 12 12 12 5 | |||
31\55 | 676.364 | 7 7 7 3 | 7;3 Superdiatonic 1/7-tone | ||
40\71 | 676.056 | 9 9 9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 675.862 | 11 11 11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 675.728 | 13 13 13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\16 | 675 | 2 2 2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
59\105 | 674.286 | 13 13 13 7 | Armodue-Mavila 1/13-tone | ||
50\89 | 674.157 | 11 11 11 6 | Armodue-Mavila 1/11-tone | ||
41\73 | 673.973 | 9 9 9 5 | Armodue-Mavila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents) | ||
32\57 | 673.684 | 7 7 7 4 | Armodue-Mavila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8') | ||
673.577 | √3 √3 √3 1 | ||||
55\98 | 673.469 | 12 12 12 7 | |||
78\139 | 673.381 | 17 17 17 10 | Armodue-Mavila 1/17-tone | ||
101\180 | 673.333 | 22 22 22 13 | |||
23\41 | 673.171 | 5 5 5 3 | 5;3 Golden Armodue-Mavila 1/5-tone | ||
60\107 | 672.897 | 13 13 13 8 | 13;8 Golden Mavila 1/13-tone | ||
672.85 | φ φ φ 1 | GOLDEN MAVILA (L/s = φ) | |||
97\173 | 672.832 | 21 21 21 13 | 21;13 Golden Mavila 1/21-tone (Phi is the step 120\173) | ||
37\66 | 672.727 | 8 8 8 5 | 8;5 Golden Mavila 1/8-tone | ||
51\91 | 672.527 | 11 11 11 7 | 11;7 Superdiatonic 1/11-tone | ||
672.523 | π π π 2 | ||||
116\207 | 672.464 | 25 25 25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 672.414 | 14 14 14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 672.340 | 17 17 17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 672.289 | 20 20 20 13 | |||
107\191 | 672.251 | 23 23 23 15 | |||
121\216 | 672.222 | 26 26 26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 672.199 | 29 29 29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 672 | 3 3 3 2 | 3;2 Golden Armodue-Mavila 1/3-tone | ||
145\259 | 671.815 | 31 31 31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 671.795 | 28 28 28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 671.770 | 25 25 25 17 | |||
103\184 | 671.739 | 22 22 22 15 | |||
89\159 | 671.698 | 19 19 19 13 | |||
75\134 | 671.642 | 16 16 16 11 | |||
61\109 | 671.560 | 13 13 13 9 | |||
47\84 | 671.429 | 10 10 10 7 | |||
80\143 | 671.329 | 17 17 17 12 | |||
33\59 | 671.186 | 7 7 7 5 | |||
52\93 | 670.968 | 11 11 11 8 | |||
19\34 | 670.588 | 4 4 4 3 | |||
43\77 | 670.13 | 9 9 9 7 | |||
24\43 | 669.767 | 5 5 5 4 | |||
53\95 | 669.474 | 11 11 11 9 | |||
29\52 | 669.231 | 6 6 6 5 | |||
63\113 | 669.0265 | 13 13 13 11 | |||
34\61 | 668.8525 | 7 7 7 6 | |||
73\131 | 668.702 | 15 15 15 13 | |||
39\70 | 668.571 | 8 8 8 7 | |||
83\149 | 668.456 | 17 17 17 15 | |||
44\79 | 668.354 | 9 9 9 8 | |||
93\167 | 668.2365 | 19 19 19 17 | |||
49\88 | 668.182 | 10 10 10 9 | |||
103\185 | 668.108 | 21 21 21 9 | |||
54\97 | 668.041 | 11 11 11 10 | |||
113\203 | 667.98 | 23 23 23 21 | |||
59\106 | 667.925 | 12 12 12 11 | |||
123\221 | 667.873 | 25 25 25 23 | |||
64\115 | 667.826 | 13 13 13 12 | |||
5\9 | 666.667 | 1 1 1 1 |