11L 2s: Difference between revisions
Jump to navigation
Jump to search
→Scale tree: improve the scale tree |
add modes |
||
Line 19: | Line 19: | ||
* 9|3 LLLLsLLLLLLsL | * 9|3 LLLLsLLLLLLsL | ||
* 8|4 LLLLsLLLLLsLL | |||
* 7|5 LLLsLLLLLLsLL | |||
* 6|6 LLLsLLLLLsLLL | |||
* 5|7 LLsLLLLLLsLLL | |||
* 4|8 LLsLLLLLsLLLL | |||
* 3|9 LsLLLLLLsLLLL | |||
* 2|10 LsLLLLLsLLLLL | |||
* 1|11 sLLLLLLsLLLLL | |||
== Scale tree == | == Scale tree == | ||
Line 74: | Line 81: | ||
|- | |- | ||
| || || ||33\61|| || ||5||3||1.667 | | || || ||33\61|| || ||5||3||1.667 | ||
|Freivald / emka is around here | |[[Freivald]] / [[emka]] is around here | ||
|- | |- | ||
| || || || || ||79\146||12||7||1.714 | | || || || || ||79\146||12||7||1.714 | ||
Line 86: | Line 93: | ||
|- | |- | ||
| ||13\24|| || || || ||2||1||2.000 | | ||13\24|| || || || ||2||1||2.000 | ||
|Basic hendecoid | |Basic hendecoid, | ||
Wyschnegradsky's diatonicized chromatic | |||
|- | |- | ||
| || || || || ||70\107||9||4||2.250 | | || || || || ||70\107||9||4||2.250 | ||
Line 122: | Line 130: | ||
|- | |- | ||
| || || ||25\46|| || ||4||1||4.000 | | || || ||25\46|| || ||4||1||4.000 | ||
| | |[[Heinz]] is around here | ||
|- | |- | ||
| || || || || ||56\103||9||2||4.500 | | || || || || ||56\103||9||2||4.500 |
Revision as of 12:48, 10 April 2023
↖ 10L 1s | ↑ 11L 1s | 12L 1s ↗ |
← 10L 2s | 11L 2s | 12L 2s → |
↙ 10L 3s | ↓ 11L 3s | 12L 3s ↘ |
┌╥╥╥╥╥╥┬╥╥╥╥╥┬┐ │║║║║║║│║║║║║││ │││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLLsLLLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
The 11L 2s MOS scale is most notable for being used by Ivan Wyschnegradsky and having a name "diatonicized chromatic scale". The more concise name for the scale, proposed by Eliora, is hendecoid. Another possible name for this mos in TAMNAMS is p-enhar balzano, being one of four enharmonic scales of 2L 7s.
From a regular temperament theory perspective, is notable for correponding to the mega chromatic scale of Heinz temperament. Its generator of 5\11 to 6\13 hits so close to 11/8 as to be able to be called nothing but that interval, making it an 11+-limit scale - the strong relationship to the number 11 is the reason for the name "hendecoid".
Modes
- 12|0 LLLLLLsLLLLLs
- 11|1 LLLLLsLLLLLLs
- 10|2 LLLLLsLLLLLsL
- 9|3 LLLLsLLLLLLsL
- 8|4 LLLLsLLLLLsLL
- 7|5 LLLsLLLLLLsLL
- 6|6 LLLsLLLLLsLLL
- 5|7 LLsLLLLLLsLLL
- 4|8 LLsLLLLLsLLLL
- 3|9 LsLLLLLLsLLLL
- 2|10 LsLLLLLsLLLLL
- 1|11 sLLLLLLsLLLLL
Scale tree
Generator | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|
7\13 | 1 | 1 | 1.000 | ||||||
41\76 | 6 | 5 | 1.200 | ||||||
34\63 | 5 | 4 | 1.250 | ||||||
61\113 | 9 | 7 | 1.286 | ||||||
27\50 | 4 | 3 | 1.333 | ||||||
74\137 | 11 | 8 | 1.375 | ||||||
47\87 | 7 | 5 | 1.400 | ||||||
67\124 | 10 | 7 | 1.428 | ||||||
20\37 | 3 | 2 | 1.500 | ||||||
73\135 | 11 | 7 | 1.571 | ||||||
53\98 | 8 | 5 | 1.600 | ||||||
86\159 | 13 | 8 | 1.625 | ||||||
33\61 | 5 | 3 | 1.667 | Freivald / emka is around here | |||||
79\146 | 12 | 7 | 1.714 | ||||||
46\85 | 7 | 4 | 1.750 | ||||||
71\109 | 9 | 5 | 1.800 | ||||||
13\24 | 2 | 1 | 2.000 | Basic hendecoid,
Wyschnegradsky's diatonicized chromatic | |||||
70\107 | 9 | 4 | 2.250 | ||||||
45\83 | 7 | 3 | 2.333 | ||||||
77\142 | 12 | 5 | 2.400 | ||||||
32\59 | 5 | 2 | 2.500 | ||||||
83\152 | 13 | 5 | 2.600 | ||||||
51\94 | 8 | 3 | 2.667 | ||||||
70\129 | 11 | 4 | 2.750 | ||||||
19\35 | 3 | 1 | 3.000 | ||||||
63\116 | 10 | 3 | 3.333 | ||||||
44\81 | 7 | 2 | 3.500 | ||||||
69\127 | 11 | 3 | 3.667 | ||||||
25\46 | 4 | 1 | 4.000 | Heinz is around here | |||||
56\103 | 9 | 2 | 4.500 | ||||||
31\57 | 5 | 1 | 5.000 | ||||||
37\68 | 6 | 1 | 6.000 | ||||||
6\11 | 1 | 0 | → inf |