1012edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
rank 2 temperaments
m Better not to advertise the 2.3.7.11.101 subgroup property
Line 3: Line 3:
== Theory ==
== Theory ==
1012edo is a strong 13-limit system, distinctly [[consistent]] through the 15-odd-limit. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. A basis for the 13-limit commas is [[2401/2400]], [[4096/4095]], [[6656/6655]], [[9801/9800]] and {{monzo| 2 6 -1 2 0 4 }}.
1012edo is a strong 13-limit system, distinctly [[consistent]] through the 15-odd-limit. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. A basis for the 13-limit commas is [[2401/2400]], [[4096/4095]], [[6656/6655]], [[9801/9800]] and {{monzo| 2 6 -1 2 0 4 }}.
In the 2.3.7.11.101, it tempers out [[7777/7776]] and is a tuning for the [[neutron star]] temperament.


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|1012}}
{{Harmonics in equal|1012}}


=== Divisors ===
=== Subsets and supersets ===
1012 has subset edos {{EDOs| 2, 4, 11, 22, 23, 44, 46, 92, 253, 506 }}.  
1012 has subset edos {{EDOs| 2, 4, 11, 22, 23, 44, 46, 92, 253, 506 }}.  


=== Trivia ===
=== Trivia ===
In addition to containing 22edo and 23edo, it contains a [[22L 1s]] scale produced by generator of 45\1012 associated with [[33/32]], and is associated with the 45 & 1012 temperament, making it [[concoctic]]. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, {{monzo| 18 15 -12 -1  0 -3 }}.
In addition to containing 22edo and 23edo, it contains a [[22L 1s]] scale produced by generator of 45\1012 associated with [[33/32]], and is associated with the 45 & 1012 temperament, making it [[concoctic]]. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, {{monzo| 18 15 -12 -1  0 -3 }}.
In the 2.3.7.11.101, it tempers out [[7777/7776]] and is a tuning for the [[neutron star]] temperament.


== Regular temperament properties ==
== Regular temperament properties ==

Revision as of 12:58, 10 February 2023

← 1011edo 1012edo 1013edo →
Prime factorization 22 × 11 × 23
Step size 1.18577 ¢ 
Fifth 592\1012 (701.976 ¢) (→ 148\253)
Semitones (A1:m2) 96:76 (113.8 ¢ : 90.12 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

1012edo is a strong 13-limit system, distinctly consistent through the 15-odd-limit. It is a zeta peak edo, though not zeta integral nor zeta gap. A basis for the 13-limit commas is 2401/2400, 4096/4095, 6656/6655, 9801/9800 and [2 6 -1 2 0 4.

Prime harmonics

Approximation of prime harmonics in 1012edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.021 +0.248 -0.051 +0.065 +0.184 +0.578 +0.115 +0.184 -0.328 +0.419
Relative (%) +0.0 +1.8 +20.9 -4.3 +5.5 +15.5 +48.8 +9.7 +15.5 -27.7 +35.3
Steps
(reduced)
1012
(0)
1604
(592)
2350
(326)
2841
(817)
3501
(465)
3745
(709)
4137
(89)
4299
(251)
4578
(530)
4916
(868)
5014
(966)

Subsets and supersets

1012 has subset edos 2, 4, 11, 22, 23, 44, 46, 92, 253, 506.

Trivia

In addition to containing 22edo and 23edo, it contains a 22L 1s scale produced by generator of 45\1012 associated with 33/32, and is associated with the 45 & 1012 temperament, making it concoctic. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, [18 15 -12 -1 0 -3.

In the 2.3.7.11.101, it tempers out 7777/7776 and is a tuning for the neutron star temperament.

Regular temperament properties

Rank-2 temperaments

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 361\1012 428.066 2800/2187 Osiris
2 491\1012 498.023 7/5 Quarvish
44 420\1012
(6\1012)
498.023
(7.115)
4/3
(18375/18304)
Ruthenium