82edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Aura (talk | contribs)
No edit summary
Royalmilktea (talk | contribs)
Interval table: expanded upon with approx. ratios
Line 4: Line 4:
{{Harmonics in equal|82}}
{{Harmonics in equal|82}}


== Interval table ==
== Intervals ==
[[Category:Equal divisions of the octave|##]]
[[Category:Equal divisions of the octave|##]]
{| class="wikitable right-all"
{| class="wikitable right-1 right-2 left-3 left-4 left-5"
|+
|+
!Degree
!Degree
!Cents
!Cents
!21-odd-limit
no-11 ratios
!Additional ratios
with 11s (82e val)
!Additional ratios
with 11s (patent val)
|-
|-
|0
|0
|0.000
|0.000
|1/1
|1/1
|1/1
|-
|-
|1
|1
|14.634
|14.634
|
|
|
|-
|-
|2
|2
|29.268
|29.268
|
|
|
|-
|-
|3
|3
|43.902
|43.902
|
|
|
|-
|-
|4
|4
|58.537
|58.537
|
|
|
|-
|-
|5
|5
|73.171
|73.171
|
|22/21
|
|-
|-
|6
|6
|87.805
|87.805
|21/20, 20/19, 19/18
|
|22/21
|-
|-
|7
|7
|102.439
|102.439
|18/17, 17/16
|
|
|-
|-
|8
|8
|117.073
|117.073
|16/15, 15/14
|
|
|-
|-
|9
|9
|131.707
|131.707
|14/13, 13/12
|
|
|-
|-
|10
|10
|146.341
|146.341
|
|
|12/11
|-
|-
|11
|11
|160.976
|160.976
|
|12/11, 11/10
|
|-
|-
|12
|12
|175.610
|175.610
|10/9, 21/19
|
|11/10
|-
|-
|13
|13
|190.244
|190.244
|19/17
|
|
|-
|-
|14
|14
|204.878
|204.878
|9/8
|
|
|-
|-
|15
|15
|219.512
|219.512
|17/15
|
|
|-
|-
|16
|16
|234.146
|234.146
|8/7
|
|
|-
|-
|17
|17
|248.780
|248.780
|15/13
|22/19
|
|-
|-
|18
|18
|263.415
|263.415
|7/6
|
|22/19
|-
|-
|19
|19
|278.049
|278.049
|20/17
|
|13/11
|-
|-
|20
| 20
|292.683
|292.683
|19/16
| 13/11
|
|-
|-
|21
|21
|307.317
|307.317
|
|
|
|-
|-
|22
|22
|321.951
|321.951
|6/5
|
|
|-
|-
|23
|23
|336.585
|336.585
|17/14
|11/9
|
|-
|-
|24
|24
|351.220
|351.220
|
|
|11/9
|-
|-
|25
|25
|365.854
|365.854
|16/13, 21/17, 26/21
|
|
|-
|-
|26
|26
|380.488
|380.488
|5/4
|
|
|-
|-
|27
|27
|395.122
|395.122
|
|
|
|-
|-
|28
|28
|409.756
|409.756
|24/19, 19/15
|
|14/11
|-
|-
|29
|29
|424.390
|424.390
|
|14/11
|
|-
|-
|30
|30
|439.024
|439.024
|9/7
|22/17
|
|-
|-
|31
|31
|453.659
|453.659
|13/10
|
|22/17
|-
|-
|32
|32
|468.293
|468.293
|17/13, 21/16
|
|
|-
|-
|33
|33
|482.927
|482.927
|
|
|
|-
|-
|34
|34
|497.561
|497.561
|4/3
|
|
|-
|-
|35
|35
|512.195
|512.195
|
|
|
|-
|-
|36
|36
|526.829
|526.829
|19/14
|
|15/11
|-
|-
|37
|37
|541.463
|541.463
|26/19
|15/11, 11/8
|
|-
|-
|38
|38
|556.098
|556.098
|
|
|11/8
|-
|-
|39
|39
|570.732
|570.732
|18/13
|
|
|-
|-
|40
|40
|585.366
|585.366
|7/5
|
|
|-
|-
|41
|41
|600.000
|600.000
|24/17, 17/12
|
|
|-
|-
|...
|...
|...
|...
|}<!-- 2-digit number -->
|
|
|
|}

Revision as of 07:10, 15 October 2022

← 81edo 82edo 83edo →
Prime factorization 2 × 41
Step size 14.6341 ¢ 
Fifth 48\82 (702.439 ¢) (→ 24\41)
Semitones (A1:m2) 8:6 (117.1 ¢ : 87.8 ¢)
Consistency limit 9
Distinct consistency limit 9

82edo, or 82 equal temperament, divides the octave into 82 equal parts of 14.634 cents each. The patent val is contorted in the 11-limit, from 82 = 2*41, and in the 13-limit the patent val tempers out 169/168 and 676/675, and in the 17-limit tempers out 273/272. It provides the optimal patent val for soothsaying temperament and supports baladic temperament.


Approximation of prime harmonics in 82edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.48 -5.83 -2.97 +4.78 -6.38 -2.52 -4.83 +0.99 -5.19 -3.57
Relative (%) +0.0 +3.3 -39.8 -20.3 +32.7 -43.6 -17.2 -33.0 +6.8 -35.4 -24.4
Steps
(reduced)
82
(0)
130
(48)
190
(26)
230
(66)
284
(38)
303
(57)
335
(7)
348
(20)
371
(43)
398
(70)
406
(78)

Intervals

Degree Cents 21-odd-limit

no-11 ratios

Additional ratios

with 11s (82e val)

Additional ratios

with 11s (patent val)

0 0.000 1/1 1/1 1/1
1 14.634
2 29.268
3 43.902
4 58.537
5 73.171 22/21
6 87.805 21/20, 20/19, 19/18 22/21
7 102.439 18/17, 17/16
8 117.073 16/15, 15/14
9 131.707 14/13, 13/12
10 146.341 12/11
11 160.976 12/11, 11/10
12 175.610 10/9, 21/19 11/10
13 190.244 19/17
14 204.878 9/8
15 219.512 17/15
16 234.146 8/7
17 248.780 15/13 22/19
18 263.415 7/6 22/19
19 278.049 20/17 13/11
20 292.683 19/16 13/11
21 307.317
22 321.951 6/5
23 336.585 17/14 11/9
24 351.220 11/9
25 365.854 16/13, 21/17, 26/21
26 380.488 5/4
27 395.122
28 409.756 24/19, 19/15 14/11
29 424.390 14/11
30 439.024 9/7 22/17
31 453.659 13/10 22/17
32 468.293 17/13, 21/16
33 482.927
34 497.561 4/3
35 512.195
36 526.829 19/14 15/11
37 541.463 26/19 15/11, 11/8
38 556.098 11/8
39 570.732 18/13
40 585.366 7/5
41 600.000 24/17, 17/12
... ...