55edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
| | Degrees of 55-EDO | | | Degrees of 55-EDO | ||
| | Cents value | | | Cents value | ||
| | Ratios it approximates | |||
|- | |- | ||
| | 0 | | | 0 | ||
| | 0 | | | 0 | ||
| | 1/1 | |||
|- | |- | ||
| | 1 | | | 1 | ||
| | 21.818 | | | 21.818 | ||
| | 128/125 | |||
|- | |- | ||
| | 2 | | | 2 | ||
| | 43.636 | | | 43.636 | ||
| | | |||
|- | |- | ||
| | 3 | | | 3 | ||
| | 65.455 | | | 65.455 | ||
| | | |||
|- | |- | ||
| | 4 | | | 4 | ||
| | 87.273 | | | 87.273 | ||
| | 25/24 | |||
|- | |- | ||
| | 5 | | | 5 | ||
| | 109.091 | | | 109.091 | ||
| | 16/15 | |||
|- | |- | ||
| | 6 | | | 6 | ||
| | 130.909 | | | 130.909 | ||
| | | |||
|- | |- | ||
| | 7 | | | 7 | ||
| | 152.727 | | | 152.727 | ||
| | | |||
|- | |- | ||
| | 8 | | | 8 | ||
| | 174.545 | | | 174.545 | ||
| | | |||
|- | |- | ||
| | 9 | | | 9 | ||
| | 196.364 | | | 196.364 | ||
| | 9/8, 10/9 | |||
|- | |- | ||
| | 10 | | | 10 | ||
Line 184: | Line 195: | ||
| | 1200.000 | | | 1200.000 | ||
|} | |} | ||
==Selected just intervals by error== | |||
The following table shows how [[Just-24|some prominent just intervals]] are represented in 43edo (ordered by absolute error). | |||
{| class="wikitable" | |||
|- | |||
! | Interval, complement | |||
! | Error (abs., in [[cent|cents]]) | |||
|- | |||
| style="text-align:center;" | [[5/4|5/4]], [[8/5|8/5]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[11/9|11/9]], [[18/11|18/11]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[8/7|8/7]], [[7/4|7/4]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[7/5|7/5]], [[10/7|10/7]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[15/14|15/14]], [[28/15|28/15]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[7/6|7/6]], [[12/7|12/7]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[12/11|12/11]], [[11/6|11/6]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[16/15|16/15]], [[15/8|15/8]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[15/11|15/11]], [[22/15|22/15]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[4/3|4/3]], [[3/2|3/2]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[6/5|6/5]], [[5/3|5/3]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[14/11|14/11]], [[11/7|11/7]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[9/7|9/7]], [[14/9|14/9]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[11/8|11/8]], [[16/11|16/11]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[11/10|11/10]], [[20/11|20/11]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[13/10|13/10]], [[20/13|20/13]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[9/8|9/8]], [[16/9|16/9]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[16/13|16/13]], [[13/8|13/8]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[10/9|10/9]], [[9/5|9/5]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[14/13|14/13]], [[13/7|13/7]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[15/13|15/13]], [[26/15|26/15]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[13/12|13/12]], [[24/13|24/13]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[18/13|18/13]], [[13/9|13/9]] | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | [[13/11|13/11]], [[22/13|22/13]] | |||
| style="text-align:center;" | | |||
|} | |||
[[category:todo:complete table]] | |||
[http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry]) | [http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry]) |
Revision as of 13:03, 21 September 2018
55 tone equal temperament
55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.
5-limit commas: 81/80, <31 1 -14|
7-limit commas: 81/80, 686/675, 6144/6125
11-limit commas: 81/80, 121/120, 176/175, 686/675
Intervals
Degrees of 55-EDO | Cents value | Ratios it approximates |
0 | 0 | 1/1 |
1 | 21.818 | 128/125 |
2 | 43.636 | |
3 | 65.455 | |
4 | 87.273 | 25/24 |
5 | 109.091 | 16/15 |
6 | 130.909 | |
7 | 152.727 | |
8 | 174.545 | |
9 | 196.364 | 9/8, 10/9 |
10 | 218.182 | |
11 | 240.000 | |
12 | 261.818 | |
13 | 283.636 | |
14 | 305.455 | |
15 | 327.273 | |
16 | 349.091 | |
17 | 370.909 | |
18 | 392.727 | |
19 | 414.545 | |
20 | 436.364 | |
21 | 458.182 | |
22 | 480.000 | |
23 | 501.818 | |
24 | 523.636 | |
25 | 545.455 | |
26 | 567.273 | |
27 | 589.091 | |
28 | 610.909 | |
29 | 632.727 | |
30 | 654.545 | |
31 | 676.364 | |
32 | 698.182 | |
33 | 720.000 | |
34 | 741.818 | |
35 | 763.636 | |
36 | 785.455 | |
37 | 807.273 | |
38 | 829.091 | |
39 | 850.909 | |
40 | 872.727 | |
41 | 894.545 | |
42 | 916.364 | |
43 | 938.182 | |
44 | 960.000 | |
45 | 981.818 | |
46 | 1003.636 | |
47 | 1025.455 | |
48 | 1047.273 | |
49 | 1069.091 | |
50 | 1090.909 | |
51 | 1112.727 | |
52 | 1134.545 | |
53 | 1156.364 | |
54 | 1178.182 | |
55 | 1200.000 |
Selected just intervals by error
The following table shows how some prominent just intervals are represented in 43edo (ordered by absolute error).
Interval, complement | Error (abs., in cents) |
---|---|
5/4, 8/5 | |
11/9, 18/11 | |
8/7, 7/4 | |
7/5, 10/7 | |
15/14, 28/15 | |
7/6, 12/7 | |
12/11, 11/6 | |
16/15, 15/8 | |
15/11, 22/15 | |
4/3, 3/2 | |
6/5, 5/3 | |
14/11, 11/7 | |
9/7, 14/9 | |
11/8, 16/11 | |
11/10, 20/11 | |
13/10, 20/13 | |
9/8, 16/9 | |
16/13, 13/8 | |
10/9, 9/5 | |
14/13, 13/7 | |
15/13, 26/15 | |
13/12, 24/13 | |
18/13, 13/9 | |
13/11, 22/13 |
Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)
"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia