472edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup and expansion
+RTT table and rank-2 temperaments
Line 7: Line 7:
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|472}}
{{Harmonics in equal|472}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5.7
| 2401/2400, 32805/32768, {{monzo| 8 14 -13 }}
| [{{val| 472 748 1096 1325 }}]
| +0.0435
| 0.0814
| 3.20
|-
| 2.3.5.7.11
| 2401/2400, 9801/9800, 32805/32768, 46656/46585
| [{{val| 472 748 1096 1325 1633 }}]
| +0.0130
| 0.0950
| 3.74
|-
| 2.3.5.7.11.13
| 729/728, 1575/1573, 2200/2197, 2401/2400, 4096/4095
| [{{val| 472 748 1096 1325 1633 1747 }}]
| -0.0341
| 0.1365
| 5.37
|}
=== Rank-2 temperaments ===
Note: 5-limit temperaments supported by [[118edo|118et]] are not included.
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 69\472
| 175.42
| 448/405
| [[Sesquiquartififths]]
|-
| 1
| 137\472
| 348.31
| 57344/46875
| [[Subneutral]]
|-
| 1
| 205\472
| 498.31
| 875/648
| [[Maviloid]]
|-
| 2
| 69\472
| 175.42
| 448/405
| [[Bisesqui]]
|-
| 8
| 196\472<br>(19\472)
| 498.31<br>(48.31)
| 4/3<br>(36/35)
| [[Octant]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Zeta]]
[[Category:Zeta]]

Revision as of 19:37, 30 January 2022

472edo is the equal division of the octave into 472 parts of 2.54237 cents each.

472edo is consistent to the 11-odd-limit. It is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma. In the 7-limit, it tempers out 2401/2400, 2460375/2458624, and 30623756184/30517578125; in the 11-limit, 9801/9800, 46656/46585, 117649/117612, and 234375/234256 , supporting the maviloid temperament, the bisesqui temperament, and the octant temperament. Using the patent val, it tempers out 729/728, 1575/1573, 2200/2197, 4096/4095, and 21168/21125 in the 13-limit, so it also supports the 13-limit octant.

It is a zeta peak integer edo.

Prime harmonics

Approximation of prime harmonics in 472edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.26 +0.13 -0.18 +0.38 +1.00 -0.72 -0.06 -0.31 +0.08 -0.97
Relative (%) +0.0 -10.2 +5.0 -7.2 +14.8 +39.2 -28.2 -2.2 -12.1 +3.3 -38.1
Steps
(reduced)
472
(0)
748
(276)
1096
(152)
1325
(381)
1633
(217)
1747
(331)
1929
(41)
2005
(117)
2135
(247)
2293
(405)
2338
(450)

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 32805/32768, [8 14 -13 [472 748 1096 1325]] +0.0435 0.0814 3.20
2.3.5.7.11 2401/2400, 9801/9800, 32805/32768, 46656/46585 [472 748 1096 1325 1633]] +0.0130 0.0950 3.74
2.3.5.7.11.13 729/728, 1575/1573, 2200/2197, 2401/2400, 4096/4095 [472 748 1096 1325 1633 1747]] -0.0341 0.1365 5.37

Rank-2 temperaments

Note: 5-limit temperaments supported by 118et are not included.

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 69\472 175.42 448/405 Sesquiquartififths
1 137\472 348.31 57344/46875 Subneutral
1 205\472 498.31 875/648 Maviloid
2 69\472 175.42 448/405 Bisesqui
8 196\472
(19\472)
498.31
(48.31)
4/3
(36/35)
Octant