431edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET | Prime factorization = 431 (prime) | Step size = 2.78422¢ | Fifth = 252\431 (701.62¢) | Semitones = 40:33 (111.37¢ : 91.88¢) | Consistency = 15 }} The '''431..." |
Commas |
||
Line 9: | Line 9: | ||
== Theory == | == Theory == | ||
431edo is [[consistent]] to the [[15-odd-limit]], tempering out the [[schisma]] in the 5-limit; [[2401/2400]] in the 7-limit; [[5632/5625]] and [[8019/8000]] in the 11-limit; [[729/728]], [[1001/1000]], [[1716/1715]] and [[10648/10647]] in the 13-limit. It [[support]]s the [[sesquiquartififths]] temperament. | 431edo is [[consistent]] to the [[15-odd-limit]], tempering out the [[schisma]] in the 5-limit; [[2401/2400]] in the 7-limit; [[5632/5625]] and [[8019/8000]] in the 11-limit; [[729/728]], [[1001/1000]], [[1716/1715]], [[4096/4095]], [[6656/6655]] and [[10648/10647]] in the 13-limit. It [[support]]s the [[sesquiquartififths]] temperament. | ||
431edo is the 83rd [[prime edo]]. | 431edo is the 83rd [[prime edo]]. | ||
Line 56: | Line 56: | ||
|- | |- | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 729/728, 1001/1000, 1716/1715, | | 729/728, 1001/1000, 1716/1715, 4096/4095, 6656/6655 | ||
| [{{val| 431 683 1001 1210 1491 1595 }}] | | [{{val| 431 683 1001 1210 1491 1595 }}] | ||
| -0.0318 | | -0.0318 |
Revision as of 22:15, 16 April 2022
← 430edo | 431edo | 432edo → |
The 431 equal divisions of the octave (431edo), or the 431(-tone) equal temperament (431tet, 431et) when viewed from a regular temperament perspective, is the equal division of the octave into 431 parts of about 2.78 cents each.
Theory
431edo is consistent to the 15-odd-limit, tempering out the schisma in the 5-limit; 2401/2400 in the 7-limit; 5632/5625 and 8019/8000 in the 11-limit; 729/728, 1001/1000, 1716/1715, 4096/4095, 6656/6655 and 10648/10647 in the 13-limit. It supports the sesquiquartififths temperament.
431edo is the 83rd prime edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.33 | +0.69 | +0.08 | -0.04 | +0.31 | +0.85 | +0.40 | +0.96 | +0.59 | -0.72 |
Relative (%) | +0.0 | -11.9 | +24.9 | +3.0 | -1.5 | +11.0 | +30.4 | +14.3 | +34.5 | +21.0 | -25.9 | |
Steps (reduced) |
431 (0) |
683 (252) |
1001 (139) |
1210 (348) |
1491 (198) |
1595 (302) |
1762 (38) |
1831 (107) |
1950 (226) |
2094 (370) |
2135 (411) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-683 431⟩ | [⟨431 683]] | +0.1044 | 0.1044 | 3.75 |
2.3.5 | 32805/32768, [7 63 -46⟩ | [⟨431 683 1001]] | -0.0230 | 0.2082 | 7.48 |
2.3.5.7 | 2401/2400, 32805/32768, [3 16 -11 -1⟩ | [⟨431 683 1001 1210]] | -0.0299 | 0.1803 | 6.48 |
2.3.5.7.11 | 2401/2400, 5632/5625, 8019/8000, 43923/43904 | [⟨431 683 1001 1210 1491]] | -0.0215 | 0.1621 | 5.82 |
2.3.5.7.11.13 | 729/728, 1001/1000, 1716/1715, 4096/4095, 6656/6655 | [⟨431 683 1001 1210 1491 1595]] | -0.0318 | 0.1498 | 5.38 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 63\431 | 175.41 | 448/405 | Sesquiquartififths |
1 | 172\431 | 498.55 | 4/3 | Helmholtz |