414edo: Difference between revisions
Jump to navigation
Jump to search
Cleanup; +prime error table |
+RTT table and rank-2 temperaments |
||
Line 1: | Line 1: | ||
'''414edo''' is the [[EDO|equal division of the octave]] into 414 parts of 2.89855 [[cent]]s each. | '''414edo''' is the [[EDO|equal division of the octave]] into 414 parts of 2.89855 [[cent]]s each. | ||
414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for 5. It is [[consistent]] to the [[17-odd-limit]], tempering out {{monzo| -36 11 8 }} (submajor comma) and {{monzo|1 -27 18}} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and | 414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for 5. It is [[consistent]] to the [[17-odd-limit]], tempering out {{monzo| -36 11 8 }} (submajor comma) and {{monzo|1 -27 18}} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], 1275/1274, and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[Ragismic microtemperaments|hemiennealimmal]] and the 13-limit [[Ragismic microtemperaments|quatracot]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|414}} | {{Harmonics in equal|414}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }} | |||
| [{{val| 414 656 961 }}] | |||
| +0.2222 | |||
| 0.1575 | |||
| 5.43 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }} | |||
| [{{val| 414 656 961 1162 }}] | |||
| +0.2299 | |||
| 0.1371 | |||
| 4.73 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | |||
| [{{val| 414 656 961 1162 1432 }}] | |||
| +0.2182 | |||
| 0.1248 | |||
| 4.30 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | |||
| [{{val| 414 656 961 1162 1432 1532 }}] | |||
| +0.1795 | |||
| 0.1431 | |||
| 4.94 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | |||
| [{{val| 414 656 961 1162 1432 1532 1692 }}] | |||
| +0.1751 | |||
| 0.1329 | |||
| 4.58 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 125\414 | |||
| 362.31 | |||
| 10125/8192 | |||
| [[Submajor]] (5-limit) | |||
|- | |||
| 2 | |||
| 61\414 | |||
| 176.81 | |||
| 195/176 | |||
| [[Quatracot]] | |||
|- | |||
| 9 | |||
| 109\414<br>(17\414) | |||
| 315.94<br>(49.28) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] | |||
|- | |||
| 18 | |||
| 86\414<br>(6\414) | |||
| 249.28<br>(17.39) | |||
| 231/200<br>(99/98) | |||
| [[Hemiennealimmal]] | |||
|- | |||
| 18 | |||
| 164\414<br>(3\414) | |||
| 475.36<br>(8.70) | |||
| 1053/800<br>(1287/1280) | |||
| [[Semihemiennealimmal]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] |
Revision as of 21:52, 26 January 2022
414edo is the equal division of the octave into 414 parts of 2.89855 cents each.
414edo is closely related to 207edo, but the patent vals differ on the mapping for 5. It is consistent to the 17-odd-limit, tempering out [-36 11 8⟩ (submajor comma) and [1 -27 18⟩ (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1⟩ in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.51 | -0.81 | -0.71 | -0.59 | +0.05 | -0.61 | +1.04 | +0.71 | -0.59 | -0.11 |
Relative (%) | +0.0 | -17.4 | -27.8 | -24.5 | -20.5 | +1.8 | -21.0 | +35.8 | +24.5 | -20.4 | -3.7 | |
Steps (reduced) |
414 (0) |
656 (242) |
961 (133) |
1162 (334) |
1432 (190) |
1532 (290) |
1692 (36) |
1759 (103) |
1873 (217) |
2011 (355) |
2051 (395) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-36 11 8⟩, [1 -27 18⟩ | [⟨414 656 961]] | +0.2222 | 0.1575 | 5.43 |
2.3.5.7 | 2401/2400, 4375/4374, [-36 11 8⟩ | [⟨414 656 961 1162]] | +0.2299 | 0.1371 | 4.73 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | [⟨414 656 961 1162 1432]] | +0.2182 | 0.1248 | 4.30 |
2.3.5.7.11.13 | 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | [⟨414 656 961 1162 1432 1532]] | +0.1795 | 0.1431 | 4.94 |
2.3.5.7.11.13.17 | 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | [⟨414 656 961 1162 1432 1532 1692]] | +0.1751 | 0.1329 | 4.58 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 125\414 | 362.31 | 10125/8192 | Submajor (5-limit) |
2 | 61\414 | 176.81 | 195/176 | Quatracot |
9 | 109\414 (17\414) |
315.94 (49.28) |
6/5 (36/35) |
Ennealimmal |
18 | 86\414 (6\414) |
249.28 (17.39) |
231/200 (99/98) |
Hemiennealimmal |
18 | 164\414 (3\414) |
475.36 (8.70) |
1053/800 (1287/1280) |
Semihemiennealimmal |