Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Cleanup (2/3)
m Cleanup (3/3)
Line 8: Line 8:


= Porcupine =
= Porcupine =
Subgroup: 2.3.5


[[Comma list]]: 250/243
[[Comma list]]: 250/243
Line 35: Line 36:


Porcupine uses six of its minor tone generator steps to get to [[7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Porcupine uses six of its minor tone generator steps to get to [[7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7


[[Comma list]]: 64/63, 250/243
[[Comma list]]: 64/63, 250/243
Line 57: Line 60:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Comma list: 55/54, 64/63, 100/99


Line 76: Line 81:


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Comma list: 40/39, 55/54, 64/63, 66/65


Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -3 -5 6 -4 -2 }}]
Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -3 -5 6 -4 -2 }}]


POTE generator: ~10/9 = 162.708
POTE generator: ~11/10 = 162.708


Minimax tuning:  
Minimax tuning:  
Line 96: Line 103:
=== Porcupinefish ===
=== Porcupinefish ===
{{see also| The Biosphere }}
{{see also| The Biosphere }}
Subgroup: 2.3.5.7.11.13


Comma list: 55/54, 64/63, 91/90, 100/99
Comma list: 55/54, 64/63, 91/90, 100/99
Line 101: Line 110:
Mapping: [{{val| 1 2 3 2 4 6 }}, {{val| 0 -3 -5 6 -4 -17 }}]
Mapping: [{{val| 1 2 3 2 4 6 }}, {{val| 0 -3 -5 6 -4 -17 }}]


POTE generator: ~10/9 = 162.277
POTE generator: ~11/10 = 162.277


Minimax tuning:  
Minimax tuning:  
Line 116: Line 125:


=== Pourcup ===
=== Pourcup ===
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Comma list: 55/54, 64/63, 100/99, 196/195


Mapping: [{{val| 1 2 3 2 4 1 }}, {{val| 0 -3 -5 6 -4 20 }}]
Mapping: [{{val| 1 2 3 2 4 1 }}, {{val| 0 -3 -5 6 -4 20 }}]


POTE generator: ~10/9 = 162.482
POTE generator: ~11/10 = 162.482


Minimax tuning:  
Minimax tuning:  
Line 130: Line 141:


=== Porkpie ===
=== Porkpie ===
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Comma list: 55/54, 64/63, 65/63, 100/99


Mapping: [{{val| 1 2 3 2 4 3 }}, {{val| 0 -3 -5 6 -4 5 }}]
Mapping: [{{val| 1 2 3 2 4 3 }}, {{val| 0 -3 -5 6 -4 5 }}]


POTE generator: ~10/9 = 163.688
POTE generator: ~11/10 = 163.688


Minimax tuning:  
Minimax tuning:  
Line 145: Line 158:
= Hystrix =
= Hystrix =
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.
Subgroup: 2.3.5.7


[[Comma list]]: 36/35, 160/147
[[Comma list]]: 36/35, 160/147
Line 152: Line 167:
{{Multival|legend=1| 3 5 1 1 -7 -12 }}
{{Multival|legend=1| 3 5 1 1 -7 -12 }}


[[POTE generator]]: ~8/7 = 158.868
[[POTE generator]]: ~10/9 = 158.868


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 162: Line 177:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Comma list: 22/21, 36/35, 80/77


Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}]


POTE generator: ~8/7 = 158.750
POTE generator: ~11/10 = 158.750


Vals: {{val list| 7, 8d, 15d }}
Vals: {{val list| 7, 8d, 15d }}
Line 173: Line 190:


= Porky =
= Porky =
Subgroup: 2.3.5.7
[[Comma list]]: 225/224, 250/243
[[Comma list]]: 225/224, 250/243


Line 189: Line 208:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Comma list: 55/54, 100/99, 225/224


Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}]
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}]


POTE generator: ~10/9 = 164.552
POTE generator: ~11/10 = 164.552


Minimax tuning:  
Minimax tuning:  
Line 203: Line 224:


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Comma list: 55/54, 65/64, 91/90, 100/99


Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}]
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}]


POTE generator: ~10/9 = 164.953
POTE generator: ~11/10 = 164.953


Vals: {{val list| 7d, 22, 29, 51f, 80cdeff }}
Vals: {{val list| 7d, 22, 29, 51f, 80cdeff }}
Line 214: Line 237:


= Coendou =
= Coendou =
Subgroup: 2.3.5.7
[[Comma list]]: 250/243, 525/512
[[Comma list]]: 250/243, 525/512


Line 230: Line 255:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Comma list: 55/54, 100/99, 525/512


Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}]
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}]


POTE generator: ~10/9 = 165.981
POTE generator: ~11/10 = 165.981


Minimax tuning:  
Minimax tuning:  
Line 244: Line 271:


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Comma list: 55/54, 65/64, 100/99, 105/104


Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}]
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}]


POTE generator: ~10/9 = 165.974
POTE generator: ~11/10 = 165.974


Minimax tuning:  
Minimax tuning:  
Line 259: Line 288:
= Hedgehog =
= Hedgehog =
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7


[[Comma list]]: 50/49, 245/243
[[Comma list]]: 50/49, 245/243
Line 273: Line 304:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Comma list: 50/49, 55/54, 99/98


Line 284: Line 317:


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Comma list: 50/49, 55/54, 65/63, 99/98


Line 295: Line 330:


=== Urchin ===
=== Urchin ===
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Comma list: 40/39, 50/49, 55/54, 66/65


Line 306: Line 343:


== Hedgepig ==
== Hedgepig ==
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Comma list: 50/49, 245/243, 385/384


Line 320: Line 359:


= Nautilus =
= Nautilus =
Subgroup: 2.3.5.7
[[Comma list]]: 49/48, 250/243
[[Comma list]]: 49/48, 250/243


Line 331: Line 372:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Comma list: 49/48, 55/54, 245/242


Line 340: Line 383:


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Comma list: 49/48, 55/54, 91/90, 100/99


Line 351: Line 396:


=== Belauensis ===
=== Belauensis ===
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Comma list: 40/39, 49/48, 55/54, 66/65


Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}]
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}]


POTE generator: ~21/20 = ~14/13 = 81.759
POTE generator: ~21/20 = 81.759


Vals: {{val list| 14c, 15, 29f, 44df }}
Vals: {{val list| 14c, 15, 29f, 44df }}
Line 365: Line 412:


= Ammonite =
= Ammonite =
Comma list: 250/243, 686/675
Subgroup: 2.3.5.7
 
[[Comma list]]: 250/243, 686/675


Mapping: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}]
[[Mapping]]: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}]


{{Multival|legend=1| 9 15 19 3 5 2 }}
{{Multival|legend=1| 9 15 19 3 5 2 }}


POTE generator: ~9/7 = 454.448
[[POTE generator]]: ~9/7 = 454.448


{{Val list|legend=1| 29, 37, 66 }}
{{Val list|legend=1| 29, 37, 66 }}


Badness: 0.1077
[[Badness]]: 0.1077


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Comma list: 55/54, 100/99, 686/675


Line 389: Line 440:


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Comma list: 55/54, 91/90, 100/99, 169/168


Line 400: Line 453:


= Ceratitid =
= Ceratitid =
Subgroup: 2.3.5.7
[[Comma list]]: 250/243, 1728/1715
[[Comma list]]: 250/243, 1728/1715


Line 413: Line 468:


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 5324/5145
Comma list: 55/54, 100/99, 5324/5145


Line 424: Line 481:


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Comma list: 55/54, 65/63, 100/99, 352/343



Revision as of 14:40, 27 April 2021

The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.

Porcupine

Subgroup: 2.3.5

Comma list: 250/243

Mapping: [1 2 3], 0 -3 -5]]

POTE generator: ~27/25 = 163.950

Tuning ranges:

  • valid range: [150.000, 171.429] (1\8 to 1\7)
  • nice range: [157.821, 166.015]
  • strict range: [157.821, 166.015]

Template:Val list

Badness: 0.0308

Extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at. That means

Septimal porcupine

Porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.

Subgroup: 2.3.5.7

Comma list: 64/63, 250/243

Mapping: [1 2 3 2], 0 -3 -5 6]]

Wedgie⟨⟨ 3 5 -6 1 -18 -28 ]]

POTE generator: ~10/9 = 162.880

Minimax tuning:

Tuning ranges:

  • valid range: [160.000, 163.636] (2\15 to 3\22)
  • nice range: [157.821, 166.015]
  • strict range: [160.000, 163.636]

Template:Val list

Badness: 0.0411

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 100/99

Mapping: [1 2 3 2 4], 0 -3 -5 6 -4]]

POTE generator: ~11/10 = 162.747

Minimax tuning:

  • 11-odd-limit eigenmonzo: 9/7

Tuning ranges:

  • valid range: [160.000, 163.636] (2\15 to 3\22)
  • nice range: [150.637, 182.404]
  • strict range: [160.000, 163.636]

Vals: Template:Val list

Badness: 0.0217

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 66/65

Mapping: [1 2 3 2 4 4], 0 -3 -5 6 -4 -2]]

POTE generator: ~11/10 = 162.708

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 11/8

Tuning ranges:

  • valid range: [160.000, 163.636] (15 to 22f)
  • nice range: [138.573, 182.404]
  • strict range: [160.000, 163.636]

Vals: Template:Val list

Badness: 0.0213

Porcupinefish

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 100/99

Mapping: [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]]

POTE generator: ~11/10 = 162.277

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 13/11

Tuning ranges:

  • valid range: [160.000, 162.162] (15 to 37)
  • nice range: [150.637, 182.404]
  • strict range: [160.000, 162.162]

Vals: Template:Val list

Badness: 0.0253

Pourcup

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 100/99, 196/195

Mapping: [1 2 3 2 4 1], 0 -3 -5 6 -4 20]]

POTE generator: ~11/10 = 162.482

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 13/7

Vals: Template:Val list

Badness: 0.0351

Porkpie

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 100/99

Mapping: [1 2 3 2 4 3], 0 -3 -5 6 -4 5]]

POTE generator: ~11/10 = 163.688

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 9/7

Vals: Template:Val list

Badness: 0.0260

Hystrix

Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.

Subgroup: 2.3.5.7

Comma list: 36/35, 160/147

Mapping: [1 2 3 3], 0 -3 -5 -1]]

Wedgie⟨⟨ 3 5 1 1 -7 -12 ]]

POTE generator: ~10/9 = 158.868

Minimax tuning:

Template:Val list

Badness: 0.0449

11-limit

Subgroup: 2.3.5.7.11

Comma list: 22/21, 36/35, 80/77

Mapping: [1 2 3 3 4], 0 -3 -5 -1 -4]]

POTE generator: ~11/10 = 158.750

Vals: Template:Val list

Badness: 0.0268

Porky

Subgroup: 2.3.5.7

Comma list: 225/224, 250/243

Mapping: [1 2 3 5], 0 -3 -5 -16]]

Wedgie⟨⟨ 3 5 16 1 17 23 ]]

POTE generator: ~10/9 = 164.412

Minimax tuning:

Template:Val list

Badness: 0.0544

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 225/224

Mapping: [1 2 3 5 4], 0 -3 -5 -16 -4]]

POTE generator: ~11/10 = 164.552

Minimax tuning:

  • 11-odd-limit eigenmonzo: 7/5

Vals: Template:Val list

Badness: 0.0273

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 91/90, 100/99

Mapping: [1 2 3 5 4 3], 0 -3 -5 -16 -4 5]]

POTE generator: ~11/10 = 164.953

Vals: Template:Val list

Badness: 0.0265

Coendou

Subgroup: 2.3.5.7

Comma list: 250/243, 525/512

Mapping: [1 2 3 1], 0 -3 -5 13]]

Wedgie⟨⟨ 3 5 -13 1 -29 -44 ]]

POTE generator: ~10/9 = 166.041

Minimax tuning:

Template:Val list

Badness: 0.1183

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 525/512

Mapping: [1 2 3 1 4], 0 -3 -5 13 -4]]

POTE generator: ~11/10 = 165.981

Minimax tuning:

  • 11-odd-limit eigenmonzo: 3/2

Vals: Template:Val list

Badness: 0.0497

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 100/99, 105/104

Mapping: [1 2 3 1 4 3], 0 -3 -5 13 -4 5]]

POTE generator: ~11/10 = 165.974

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 3/2

Vals: Template:Val list

Badness: 0.0302

Hedgehog

Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the 146 232 338 411] val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.

Subgroup: 2.3.5.7

Comma list: 50/49, 245/243

Mapping: [2 1 1 2], 0 3 5 5]]

Wedgie⟨⟨ 6 10 10 2 -1 -5 ]]

POTE generator: ~9/7 = 435.648

Template:Val list

Badness: 0.0440

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 99/98

Mapping: [2 1 1 2 4], 0 3 5 5 4]]

POTE generator: ~9/7 = 435.386

Vals: Template:Val list

Badness: 0.0231

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 99/98

Mapping: [2 1 1 2 4 3], 0 3 5 5 4 6]]

POTE generator: ~9/7 = 435.861

Vals: Template:Val list

Badness: 0.0215

Urchin

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 55/54, 66/65

Mapping: [2 1 1 2 4 6], 0 3 5 5 4 2]]

POTE generator: ~9/7 = 437.078

Vals: Template:Val list

Badness: 0.0252

Hedgepig

Subgroup: 2.3.5.7.11

Comma list: 50/49, 245/243, 385/384

Mapping: [2 1 1 2 12], 0 3 5 5 -7]]

POTE generator: ~9/7 = 435.425

Vals: Template:Val list

Badness: 0.0684

Music

Phobos Light by Chris Vaisvil in Hedgehog[14] tuned to 22edo.

Nautilus

Subgroup: 2.3.5.7

Comma list: 49/48, 250/243

Mapping: [1 2 3 3], 0 -6 -10 -3]]

Wedgie⟨⟨ 6 10 3 2 -12 -21 ]]

POTE generator: ~21/20 = 82.505

Template:Val list

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 245/242

Mapping: [1 2 3 3 4], 0 -6 -10 -3 -8]]

POTE generator: ~21/20 = 82.504

Vals: Template:Val list

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 91/90, 100/99

Mapping: [1 2 3 3 4 5], 0 -6 -10 -3 -8 -19]]

POTE generator: ~21/20 = 62.530

Vals: Template:Val list

Badness: 0.0223

Belauensis

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 49/48, 55/54, 66/65

Mapping: [1 2 3 3 4 4], 0 -6 -10 -3 -8 -4]]

POTE generator: ~21/20 = 81.759

Vals: Template:Val list

Badness: 0.0298

Music

Nautilus Reverie by Igliashon Calvin Jones-Coolidge

Ammonite

Subgroup: 2.3.5.7

Comma list: 250/243, 686/675

Mapping: [1 5 8 10], 0 -9 -15 -19]]

Wedgie⟨⟨ 9 15 19 3 5 2 ]]

POTE generator: ~9/7 = 454.448

Template:Val list

Badness: 0.1077

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 686/675

Mapping: [1 5 8 10 8], 0 -9 -15 -19 -12]]

POTE generator: ~9/7 = 454.512

Vals: Template:Val list

Badness: 0.0457

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 91/90, 100/99, 169/168

Mapping: [1 5 8 10 8 9], 0 -9 -15 -19 -12 -14]]

POTE generator: ~13/10 = 454.429

Vals: Template:Val list

Badness: 0.0272

Ceratitid

Subgroup: 2.3.5.7

Comma list: 250/243, 1728/1715

Mapping: [1 2 3 3], 0 -9 -15 -4]]

Wedgie⟨⟨ 9 15 4 3 -19 -33 ]]

POTE generator: ~36/35 = 54.384

Template:Val list

Badness: 0.115

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 5324/5145

Mapping: [1 2 3 3 4], 0 -9 -15 -4 -12]]

POTE generator: ~36/35 = 54.376

Vals: Template:Val list

Badness: 0.0513

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/63, 100/99, 352/343

Mapping: [1 2 3 3 4 4], 0 -9 -15 -4 -12 -7]]

POTE generator: ~36/35 = 54.665

Vals: Template:Val list

Badness: 0.0447