Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Cleanup (1/3)
m Cleanup (2/3)
Line 11: Line 11:
[[Comma list]]: 250/243
[[Comma list]]: 250/243


[[Mapping]]: [<1 2 3|, <0 -3 -5|]
[[Mapping]]: [{{val| 1 2 3 }}, {{val| 0 -3 -5 }}]


[[POTE generator]]: ~27/25 = 163.950
[[POTE generator]]: ~27/25 = 163.950
Line 38: Line 38:
[[Comma list]]: 64/63, 250/243
[[Comma list]]: 64/63, 250/243


[[Mapping]]: [<1 2 3 2|, <0 -3 -5 6|]
[[Mapping]]: [{{val| 1 2 3 2 }}, {{val| 0 -3 -5 6 }}]


{{Multival|legend=1| 3 5 -6 1 -18 -28 }}
{{Multival|legend=1| 3 5 -6 1 -18 -28 }}
Line 59: Line 59:
Comma list: 55/54, 64/63, 100/99
Comma list: 55/54, 64/63, 100/99


Mapping: [<1 2 3 2 4|, <0 -3 -5 6 -4|]
Mapping: [{{val| 1 2 3 2 4 }}, {{val| 0 -3 -5 6 -4 }}]


POTE generator: ~11/10 = 162.747
POTE generator: ~11/10 = 162.747
Line 78: Line 78:
Comma list: 40/39, 55/54, 64/63, 66/65
Comma list: 40/39, 55/54, 64/63, 66/65


Mapping: [<1 2 3 2 4 4|, <0 -3 -5 6 -4 -2|]
Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -3 -5 6 -4 -2 }}]


POTE generator: ~10/9 = 162.708
POTE generator: ~10/9 = 162.708
Line 99: Line 99:
Comma list: 55/54, 64/63, 91/90, 100/99
Comma list: 55/54, 64/63, 91/90, 100/99


Mapping: [<1 2 3 2 4 6|, <0 -3 -5 6 -4 -17|]
Mapping: [{{val| 1 2 3 2 4 6 }}, {{val| 0 -3 -5 6 -4 -17 }}]


POTE generator: ~10/9 = 162.277
POTE generator: ~10/9 = 162.277
Line 118: Line 118:
Comma list: 55/54, 64/63, 100/99, 196/195
Comma list: 55/54, 64/63, 100/99, 196/195


Mapping: [<1 2 3 2 4 1|, <0 -3 -5 6 -4 20|]
Mapping: [{{val| 1 2 3 2 4 1 }}, {{val| 0 -3 -5 6 -4 20 }}]


POTE generator: ~10/9 = 162.482
POTE generator: ~10/9 = 162.482
Line 132: Line 132:
Comma list: 55/54, 64/63, 65/63, 100/99
Comma list: 55/54, 64/63, 65/63, 100/99


Mapping: [<1 2 3 2 4 3|, <0 -3 -5 6 -4 5|]
Mapping: [{{val| 1 2 3 2 4 3 }}, {{val| 0 -3 -5 6 -4 5 }}]


POTE generator: ~10/9 = 163.688
POTE generator: ~10/9 = 163.688
Line 144: Line 144:


= Hystrix =
= Hystrix =
Hystrix, with wedgie <<3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.


[[Comma list]]: 36/35, 160/147
[[Comma list]]: 36/35, 160/147


[[Mapping]]: [<1 2 3 3|, <0 -3 -5 -1|]
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -3 -5 -1 }}]
 
{{Multival|legend=1| 3 5 1 1 -7 -12 }}


[[POTE generator]]: ~8/7 = 158.868
[[POTE generator]]: ~8/7 = 158.868
Line 162: Line 164:
Comma list: 22/21, 36/35, 80/77
Comma list: 22/21, 36/35, 80/77


Mapping: [<1 2 3 3 4|, <0 -3 -5 -1 -4|]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}]


POTE generator: ~8/7 = 158.750
POTE generator: ~8/7 = 158.750
Line 173: Line 175:
[[Comma list]]: 225/224, 250/243
[[Comma list]]: 225/224, 250/243


[[Mapping]]: [<1 2 3 5|, <0 -3 -5 -16|]
[[Mapping]]: [{{val| 1 2 3 5 }}, {{val| 0 -3 -5 -16 }}]


Wedgie: <<3 5 16 1 17 23||
{{Multival|legend=1| 3 5 16 1 17 23 }}


[[POTE generator]]: ~10/9 = 164.412
[[POTE generator]]: ~10/9 = 164.412
Line 189: Line 191:
Comma list: 55/54, 100/99, 225/224
Comma list: 55/54, 100/99, 225/224


Mapping: [<1 2 3 5 4|, <0 -3 -5 -16 -4|]
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}]


POTE generator: ~10/9 = 164.552
POTE generator: ~10/9 = 164.552
Line 203: Line 205:
Comma list: 55/54, 65/64, 91/90, 100/99
Comma list: 55/54, 65/64, 91/90, 100/99


Mapping: [<1 2 3 5 4 3|, <0 -3 -5 -16 -4 5|]
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}]


POTE generator: ~10/9 = 164.953
POTE generator: ~10/9 = 164.953
Line 214: Line 216:
[[Comma list]]: 250/243, 525/512
[[Comma list]]: 250/243, 525/512


[[Mapping]]: [<1 2 3 1|, <0 -3 -5 13|]
[[Mapping]]: [{{val| 1 2 3 1 }}, {{val| 0 -3 -5 13 }}]


Wedgie: <<3 5 -13 1 -29 -44||
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}


[[POTE generator]]: ~10/9 = 166.041
[[POTE generator]]: ~10/9 = 166.041
Line 230: Line 232:
Comma list: 55/54, 100/99, 525/512
Comma list: 55/54, 100/99, 525/512


Mapping: [<1 2 3 1 4|, <0 -3 -5 13 -4|]
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}]


POTE generator: ~10/9 = 165.981
POTE generator: ~10/9 = 165.981
Line 244: Line 246:
Comma list: 55/54, 65/64, 100/99, 105/104
Comma list: 55/54, 65/64, 100/99, 105/104


Mapping: [<1 2 3 1 4 3|, <0 -3 -5 13 -4 5|]
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}]


POTE generator: ~10/9 = 165.974
POTE generator: ~10/9 = 165.974
Line 256: Line 258:


= Hedgehog =
= Hedgehog =
Hedgehog, with wedgie <<6 10 10 2 -1 -5||, has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the <146 232 338 411| val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.


[[Comma list]]: 50/49, 245/243
[[Comma list]]: 50/49, 245/243


[[Mapping]]: [<2 1 1 2|, <0 3 5 5|]
[[Mapping]]: [{{val| 2 1 1 2 }}, {{val| 0 3 5 5 }}]


Wedgie: <<6 10 10 2 -1 -5||
{{Multival|legend=1| 6 10 10 2 -1 -5 }}


[[POTE generator]]: ~9/7 = 435.648
[[POTE generator]]: ~9/7 = 435.648
Line 273: Line 275:
Comma list: 50/49, 55/54, 99/98
Comma list: 50/49, 55/54, 99/98


Mapping: [<2 1 1 2 4|, <0 3 5 5 4|]
Mapping: [{{val| 2 1 1 2 4 }}, {{val| 0 3 5 5 4 }}]


POTE generator: ~9/7 = 435.386
POTE generator: ~9/7 = 435.386
Line 284: Line 286:
Comma list: 50/49, 55/54, 65/63, 99/98
Comma list: 50/49, 55/54, 65/63, 99/98


Mapping: [<2 1 1 2 4 3|, <0 3 5 5 4 6|]
Mapping: [{{val| 2 1 1 2 4 3 }}, {{val| 0 3 5 5 4 6 }}]


POTE generator: ~9/7 = 435.861
POTE generator: ~9/7 = 435.861
Line 295: Line 297:
Comma list: 40/39, 50/49, 55/54, 66/65
Comma list: 40/39, 50/49, 55/54, 66/65


Mapping: [<2 1 1 2 4 6|, <0 3 5 5 4 2|]
Mapping: [{{val| 2 1 1 2 4 6 }}, {{val| 0 3 5 5 4 2 }}]


POTE generator: ~9/7 = 437.078
POTE generator: ~9/7 = 437.078
Line 306: Line 308:
Comma list: 50/49, 245/243, 385/384
Comma list: 50/49, 245/243, 385/384


Mapping: [<2 1 1 2 12|, <0 3 5 5 -7|]
Mapping: [{{val| 2 1 1 2 12 }}, {{val| 0 3 5 5 -7 }}]


POTE generator: ~9/7 = 435.425
POTE generator: ~9/7 = 435.425
Line 320: Line 322:
[[Comma list]]: 49/48, 250/243
[[Comma list]]: 49/48, 250/243


[[Mapping]]: [<1 2 3 3|, <0 -6 -10 -3|]
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -6 -10 -3 }}]


Wedgie: <<6 10 3 2 -12 -21||
{{Multival|legend=1| 6 10 3 2 -12 -21 }}


[[POTE generator]]: ~21/20 = 82.505
[[POTE generator]]: ~21/20 = 82.505
Line 331: Line 333:
Comma list: 49/48, 55/54, 245/242
Comma list: 49/48, 55/54, 245/242


Mapping: [<1 2 3 3 4|, <0 -6 -10 -3 -8|]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -6 -10 -3 -8 }}]


POTE generator: ~21/20 = 82.504
POTE generator: ~21/20 = 82.504
Line 340: Line 342:
Comma list: 49/48, 55/54, 91/90, 100/99
Comma list: 49/48, 55/54, 91/90, 100/99


Mapping: [<1 2 3 3 4 5|, <0 -6 -10 -3 -8 -19|]
Mapping: [{{val| 1 2 3 3 4 5 }}, {{val| 0 -6 -10 -3 -8 -19 }}]


POTE generator: ~21/20 = 62.530
POTE generator: ~21/20 = 62.530
Line 351: Line 353:
Comma list: 40/39, 49/48, 55/54, 66/65
Comma list: 40/39, 49/48, 55/54, 66/65


Mapping: [<1 2 3 3 4 4|, <0 -6 -10 -3 -8 -4|]
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}]


POTE generator: ~21/20 = ~14/13 = 81.759
POTE generator: ~21/20 = ~14/13 = 81.759
Line 365: Line 367:
Comma list: 250/243, 686/675
Comma list: 250/243, 686/675


Mapping: [<1 5 8 10|, <0 -9 -15 -19|]
Mapping: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}]


Wedgie: <<9 15 19 3 5 2||
{{Multival|legend=1| 9 15 19 3 5 2 }}


POTE generator: ~9/7 = 454.448
POTE generator: ~9/7 = 454.448
Line 378: Line 380:
Comma list: 55/54, 100/99, 686/675
Comma list: 55/54, 100/99, 686/675


Mapping: [<1 5 8 10 8|, <0 -9 -15 -19 -12|]
Mapping: [{{val| 1 5 8 10 8 }}, {{val| 0 -9 -15 -19 -12 }}]


POTE generator: ~9/7 = 454.512
POTE generator: ~9/7 = 454.512
Line 389: Line 391:
Comma list: 55/54, 91/90, 100/99, 169/168
Comma list: 55/54, 91/90, 100/99, 169/168


Mapping: [<1 5 8 10 8 9|, <0 -9 -15 -19 -12 -14|]
Mapping: [{{val| 1 5 8 10 8 9 }}, {{val| 0 -9 -15 -19 -12 -14 }}]


POTE generator: ~13/10 = 454.429
POTE generator: ~13/10 = 454.429
Line 400: Line 402:
[[Comma list]]: 250/243, 1728/1715
[[Comma list]]: 250/243, 1728/1715


[[Mapping]]: [<1 2 3 3|, <0 -9 -15 -4|]
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -9 -15 -4 }}]


Wedgie: <<9 15 4 3 -19 -33||
{{Multival|legend=1| 9 15 4 3 -19 -33 }}


[[POTE generator]]: ~36/35 = 54.384
[[POTE generator]]: ~36/35 = 54.384
Line 413: Line 415:
Comma list: 55/54, 100/99, 5324/5145
Comma list: 55/54, 100/99, 5324/5145


Mapping: [<1 2 3 3 4|, <0 -9 -15 -4 -12|]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}]


POTE generator: ~36/35 = 54.376
POTE generator: ~36/35 = 54.376
Line 424: Line 426:
Comma list: 55/54, 65/63, 100/99, 352/343
Comma list: 55/54, 65/63, 100/99, 352/343


Mapping: [<1 2 3 3 4 4|, <0 -9 -15 -4 -12 -7|]
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -9 -15 -4 -12 -7 }}]


POTE generator: ~36/35 = 54.665
POTE generator: ~36/35 = 54.665

Revision as of 14:32, 27 April 2021

The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.

Porcupine

Comma list: 250/243

Mapping: [1 2 3], 0 -3 -5]]

POTE generator: ~27/25 = 163.950

Tuning ranges:

  • valid range: [150.000, 171.429] (1\8 to 1\7)
  • nice range: [157.821, 166.015]
  • strict range: [157.821, 166.015]

Template:Val list

Badness: 0.0308

Extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at. That means

Septimal porcupine

Porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.

Comma list: 64/63, 250/243

Mapping: [1 2 3 2], 0 -3 -5 6]]

Wedgie⟨⟨ 3 5 -6 1 -18 -28 ]]

POTE generator: ~10/9 = 162.880

Minimax tuning:

Tuning ranges:

  • valid range: [160.000, 163.636] (2\15 to 3\22)
  • nice range: [157.821, 166.015]
  • strict range: [160.000, 163.636]

Template:Val list

Badness: 0.0411

11-limit

Comma list: 55/54, 64/63, 100/99

Mapping: [1 2 3 2 4], 0 -3 -5 6 -4]]

POTE generator: ~11/10 = 162.747

Minimax tuning:

  • 11-odd-limit eigenmonzo: 9/7

Tuning ranges:

  • valid range: [160.000, 163.636] (2\15 to 3\22)
  • nice range: [150.637, 182.404]
  • strict range: [160.000, 163.636]

Vals: Template:Val list

Badness: 0.0217

13-limit

Comma list: 40/39, 55/54, 64/63, 66/65

Mapping: [1 2 3 2 4 4], 0 -3 -5 6 -4 -2]]

POTE generator: ~10/9 = 162.708

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 11/8

Tuning ranges:

  • valid range: [160.000, 163.636] (15 to 22f)
  • nice range: [138.573, 182.404]
  • strict range: [160.000, 163.636]

Vals: Template:Val list

Badness: 0.0213

Porcupinefish

Comma list: 55/54, 64/63, 91/90, 100/99

Mapping: [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]]

POTE generator: ~10/9 = 162.277

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 13/11

Tuning ranges:

  • valid range: [160.000, 162.162] (15 to 37)
  • nice range: [150.637, 182.404]
  • strict range: [160.000, 162.162]

Vals: Template:Val list

Badness: 0.0253

Pourcup

Comma list: 55/54, 64/63, 100/99, 196/195

Mapping: [1 2 3 2 4 1], 0 -3 -5 6 -4 20]]

POTE generator: ~10/9 = 162.482

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 13/7

Vals: Template:Val list

Badness: 0.0351

Porkpie

Comma list: 55/54, 64/63, 65/63, 100/99

Mapping: [1 2 3 2 4 3], 0 -3 -5 6 -4 5]]

POTE generator: ~10/9 = 163.688

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 9/7

Vals: Template:Val list

Badness: 0.0260

Hystrix

Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.

Comma list: 36/35, 160/147

Mapping: [1 2 3 3], 0 -3 -5 -1]]

Wedgie⟨⟨ 3 5 1 1 -7 -12 ]]

POTE generator: ~8/7 = 158.868

Minimax tuning:

Template:Val list

Badness: 0.0449

11-limit

Comma list: 22/21, 36/35, 80/77

Mapping: [1 2 3 3 4], 0 -3 -5 -1 -4]]

POTE generator: ~8/7 = 158.750

Vals: Template:Val list

Badness: 0.0268

Porky

Comma list: 225/224, 250/243

Mapping: [1 2 3 5], 0 -3 -5 -16]]

Wedgie⟨⟨ 3 5 16 1 17 23 ]]

POTE generator: ~10/9 = 164.412

Minimax tuning:

Template:Val list

Badness: 0.0544

11-limit

Comma list: 55/54, 100/99, 225/224

Mapping: [1 2 3 5 4], 0 -3 -5 -16 -4]]

POTE generator: ~10/9 = 164.552

Minimax tuning:

  • 11-odd-limit eigenmonzo: 7/5

Vals: Template:Val list

Badness: 0.0273

13-limit

Comma list: 55/54, 65/64, 91/90, 100/99

Mapping: [1 2 3 5 4 3], 0 -3 -5 -16 -4 5]]

POTE generator: ~10/9 = 164.953

Vals: Template:Val list

Badness: 0.0265

Coendou

Comma list: 250/243, 525/512

Mapping: [1 2 3 1], 0 -3 -5 13]]

Wedgie⟨⟨ 3 5 -13 1 -29 -44 ]]

POTE generator: ~10/9 = 166.041

Minimax tuning:

Template:Val list

Badness: 0.1183

11-limit

Comma list: 55/54, 100/99, 525/512

Mapping: [1 2 3 1 4], 0 -3 -5 13 -4]]

POTE generator: ~10/9 = 165.981

Minimax tuning:

  • 11-odd-limit eigenmonzo: 3/2

Vals: Template:Val list

Badness: 0.0497

13-limit

Comma list: 55/54, 65/64, 100/99, 105/104

Mapping: [1 2 3 1 4 3], 0 -3 -5 13 -4 5]]

POTE generator: ~10/9 = 165.974

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo: 3/2

Vals: Template:Val list

Badness: 0.0302

Hedgehog

Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the 146 232 338 411] val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.

Comma list: 50/49, 245/243

Mapping: [2 1 1 2], 0 3 5 5]]

Wedgie⟨⟨ 6 10 10 2 -1 -5 ]]

POTE generator: ~9/7 = 435.648

Template:Val list

Badness: 0.0440

11-limit

Comma list: 50/49, 55/54, 99/98

Mapping: [2 1 1 2 4], 0 3 5 5 4]]

POTE generator: ~9/7 = 435.386

Vals: Template:Val list

Badness: 0.0231

13-limit

Comma list: 50/49, 55/54, 65/63, 99/98

Mapping: [2 1 1 2 4 3], 0 3 5 5 4 6]]

POTE generator: ~9/7 = 435.861

Vals: Template:Val list

Badness: 0.0215

Urchin

Comma list: 40/39, 50/49, 55/54, 66/65

Mapping: [2 1 1 2 4 6], 0 3 5 5 4 2]]

POTE generator: ~9/7 = 437.078

Vals: Template:Val list

Badness: 0.0252

Hedgepig

Comma list: 50/49, 245/243, 385/384

Mapping: [2 1 1 2 12], 0 3 5 5 -7]]

POTE generator: ~9/7 = 435.425

Vals: Template:Val list

Badness: 0.0684

Music

Phobos Light by Chris Vaisvil in Hedgehog[14] tuned to 22edo.

Nautilus

Comma list: 49/48, 250/243

Mapping: [1 2 3 3], 0 -6 -10 -3]]

Wedgie⟨⟨ 6 10 3 2 -12 -21 ]]

POTE generator: ~21/20 = 82.505

Template:Val list

11-limit

Comma list: 49/48, 55/54, 245/242

Mapping: [1 2 3 3 4], 0 -6 -10 -3 -8]]

POTE generator: ~21/20 = 82.504

Vals: Template:Val list

13-limit

Comma list: 49/48, 55/54, 91/90, 100/99

Mapping: [1 2 3 3 4 5], 0 -6 -10 -3 -8 -19]]

POTE generator: ~21/20 = 62.530

Vals: Template:Val list

Badness: 0.0223

Belauensis

Comma list: 40/39, 49/48, 55/54, 66/65

Mapping: [1 2 3 3 4 4], 0 -6 -10 -3 -8 -4]]

POTE generator: ~21/20 = ~14/13 = 81.759

Vals: Template:Val list

Badness: 0.0298

Music

Nautilus Reverie by Igliashon Calvin Jones-Coolidge

Ammonite

Comma list: 250/243, 686/675

Mapping: [1 5 8 10], 0 -9 -15 -19]]

Wedgie⟨⟨ 9 15 19 3 5 2 ]]

POTE generator: ~9/7 = 454.448

Template:Val list

Badness: 0.1077

11-limit

Comma list: 55/54, 100/99, 686/675

Mapping: [1 5 8 10 8], 0 -9 -15 -19 -12]]

POTE generator: ~9/7 = 454.512

Vals: Template:Val list

Badness: 0.0457

13-limit

Comma list: 55/54, 91/90, 100/99, 169/168

Mapping: [1 5 8 10 8 9], 0 -9 -15 -19 -12 -14]]

POTE generator: ~13/10 = 454.429

Vals: Template:Val list

Badness: 0.0272

Ceratitid

Comma list: 250/243, 1728/1715

Mapping: [1 2 3 3], 0 -9 -15 -4]]

Wedgie⟨⟨ 9 15 4 3 -19 -33 ]]

POTE generator: ~36/35 = 54.384

Template:Val list

Badness: 0.115

11-limit

Comma list: 55/54, 100/99, 5324/5145

Mapping: [1 2 3 3 4], 0 -9 -15 -4 -12]]

POTE generator: ~36/35 = 54.376

Vals: Template:Val list

Badness: 0.0513

13-limit

Comma list: 55/54, 65/63, 100/99, 352/343

Mapping: [1 2 3 3 4 4], 0 -9 -15 -4 -12 -7]]

POTE generator: ~36/35 = 54.665

Vals: Template:Val list

Badness: 0.0447