Syntonic–kleismic equivalence continuum: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Inthar (talk | contribs)
mNo edit summary
Tags: Mobile edit Mobile web edit
Cleanup
Line 90: Line 90:
== Mowgli ==
== Mowgli ==


Commas: {{Monzo|0 22 -15}}
Comma list: {{Monzo|0 22 -15}}


POTE generator: 126.7237 cents
POTE generator: 126.7237 cents


Map: [<1 0 0|, <0 15 22|]
Mapping: [{{val| 1 0 0 }}, {{val| 0 15 22 }}]


EDOs: {{EDOs| 19, 38, 57, 66c, 76, 85c, 104c, 123, 142, 161 }}
{{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }}


[http://x31eq.com/cgi-bin/rt.cgi?ets=19_104c&limit=5 The temperament finder - 5-limit mowgli]
== 8c & 19 ==


== 19 & 8c ==
Comma list: {{Monzo|-32 10 7}} = 4613203125/4294967296
 
Commas: {{Monzo|-32 10 7}} (4613203125/4294967296)


POTE generator: 442.2674 cents
POTE generator: 442.2674 cents


Map: [<1 -1 6|, <0 7 -10|]
Mapping: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}]


EDOs: {{EDOs| 8c, 11, 19, 27c, 30b, 38, 46c, 49b, 57, 76 }}
{{Val list|legend=1| 8c, 11, 19 }}


[http://x31eq.com/cgi-bin/rt.cgi?ets=19_8c&limit=5 The temperament finder - 5-limit 19 & 8c]
[http://x31eq.com/cgi-bin/rt.cgi?ets=19_8c&limit=5 The temperament finder - 5-limit 19 & 8c]
Line 114: Line 112:
== 19 & 506 ==
== 19 & 506 ==


Commas: {{Monzo|38 61 -58}}
Comma list: {{Monzo| 38 61 -58 }}


POTE generator: 505.1394 cents
POTE generator: 505.1394 cents


Map: [<1 26 28|, <0 -58 -61|]
Mapping: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}]


EDOs: {{EDOs| 19, 38, 57, 468, 487, 506, 525, 544, 1012, 1031 }}
{{Val list|legend=1| 19, 468, 487, 506, 1031 }}


[http://x31eq.com/cgi-bin/rt.cgi?ets=19_506&limit=5 The temperament finder - 5-limit 19 & 506]
[http://x31eq.com/cgi-bin/rt.cgi?ets=19_506&limit=5 The temperament finder - 5-limit 19 & 506]

Revision as of 08:08, 16 March 2021

The syntonic-enneadecal equivalence continuum is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the 19-comma ([-30 19).

All temperaments in the continuum satisfy (81/80)k ~ [-30 19. Varying k results in different temperaments listed in the table below. It converges to meantone as k approaches infinity. If we allow non-integer and infinite k, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of k is approximately 6.376..., and temperaments having k near this value tend to be the most accurate ones.

This continuum can be expressed as the relationship between 81/80 and the enneadeca ([-14 -19 19). That is, (81/80)n ~ [-14 -19 19. In this case, n = 3k - 19.

Temperaments in the continuum
k Temperament Comma
Ratio Monzo
0 19 & 19c 1162261467/1073741824 [-30 19
1 Lalayo 71744535/67108864 [-26 15 1
2 Hogzilla 4428675/4194304 [-22 11 2
3 Stump 273375/262144 [-18 7 3
4 Negri 16875/16384 [-14 3 4
5 Magic 3125/3072 [-10 -1 5
6 Hanson 15625/15552 [-6 -5 6
7 Sensi 78732/78125 [2 9 -7
8 Unicorn 1594323/1562500 [-2 13 -8
9 19 & 51c 129140163/125000000 [-6 17 -9
Meantone 81/80 [-4 4 -1

Examples of temperaments with fractional values of k:

Mowgli

Comma list: [0 22 -15

POTE generator: 126.7237 cents

Mapping: [1 0 0], 0 15 22]]

Template:Val list

8c & 19

Comma list: [-32 10 7 = 4613203125/4294967296

POTE generator: 442.2674 cents

Mapping: [1 -1 6], 0 7 -10]]

Template:Val list

The temperament finder - 5-limit 19 & 8c

19 & 506

Comma list: [38 61 -58

POTE generator: 505.1394 cents

Mapping: [1 26 28], 0 -58 -61]]

Template:Val list

The temperament finder - 5-limit 19 & 506