93edo: Difference between revisions
m clear up wording |
No edit summary |
||
Line 2: | Line 2: | ||
Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710¢, 103.226¢, and 296.774¢ respectively), it also allows one to give a clearer harmonic identity to [[31edo]]'s excellent approximation of 13:17:19. | Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710¢, 103.226¢, and 296.774¢ respectively), it also allows one to give a clearer harmonic identity to [[31edo]]'s excellent approximation of 13:17:19. | ||
Since 93edo has a step of 12.903 cents, it also allows one to use its MOS scales as circulating temperaments, which it is the first edo to do. | |||
{| class="wikitable" | |||
|+Circulating temperaments in 93edo | |||
!Tones | |||
!Pattern | |||
!L:s | |||
|- | |||
|5 | |||
|[[3L 2s]] | |||
|19:18 | |||
|- | |||
|6 | |||
|[[3L 3s]] | |||
|16:15 | |||
|- | |||
|7 | |||
|[[2L 5s]] | |||
|14:13 | |||
|- | |||
|8 | |||
|[[5L 3s]] | |||
|12:11 | |||
|- | |||
|9 | |||
|[[3L 6s]] | |||
|11:10 | |||
|- | |||
|10 | |||
|[[3L 7s]] | |||
|10:9 | |||
|- | |||
|11 | |||
|[[5L 6s]] | |||
|9:8 | |||
|- | |||
|12 | |||
|[[9L 3s]] | |||
| rowspan="2" |8:7 | |||
|- | |||
|13 | |||
|[[2L 11s]] | |||
|- | |||
|14 | |||
|[[9L 5s]] | |||
| rowspan="2" |7:6 | |||
|- | |||
|15 | |||
|[[3L 12s]] | |||
|- | |||
|16 | |||
|13L 3s | |||
| rowspan="3" |6:5 | |||
|- | |||
|17 | |||
|[[8L 9s]] | |||
|- | |||
|18 | |||
|3L 15s | |||
|- | |||
|19 | |||
|[[17L 2s]] | |||
| rowspan="5" |5:4 | |||
|- | |||
|20 | |||
|[[13L 7s]] | |||
|- | |||
|21 | |||
|9L 12s | |||
|- | |||
|22 | |||
|[[5L 17s]] | |||
|- | |||
|23 | |||
|1L 22s | |||
|- | |||
|24 | |||
|21L 3s | |||
| rowspan="7" |4:3 | |||
|- | |||
|25 | |||
|18L 7s | |||
|- | |||
|26 | |||
|15L 11s | |||
|- | |||
|27 | |||
|12L 15s | |||
|- | |||
|28 | |||
|9L 19s | |||
|- | |||
|29 | |||
|6L 23s | |||
|- | |||
|30 | |||
|3L 27s | |||
|- | |||
|31 | |||
|[[31edo]] | |||
|equal | |||
|- | |||
|32 | |||
|29L 3s | |||
| rowspan="15" |3:2 | |||
|- | |||
|33 | |||
|27L 6s | |||
|- | |||
|34 | |||
|25L 9s | |||
|- | |||
|35 | |||
|23L 12s | |||
|- | |||
|36 | |||
|21L 15s | |||
|- | |||
|37 | |||
|19L 18s | |||
|- | |||
|38 | |||
|17L 21s | |||
|- | |||
|39 | |||
|15L 24s | |||
|- | |||
|40 | |||
|13L 27s | |||
|- | |||
|41 | |||
|12L 29s | |||
|- | |||
|42 | |||
|9L 33s | |||
|- | |||
|43 | |||
|7L 36s | |||
|- | |||
|44 | |||
|5L 39s | |||
|- | |||
|45 | |||
|3L 42s | |||
|- | |||
|46 | |||
|1L 45s | |||
|- | |||
|47 | |||
|46L 1s | |||
| rowspan="28" |2:1 | |||
|- | |||
|48 | |||
|45L 3s | |||
|- | |||
|49 | |||
|44L 5s | |||
|- | |||
|50 | |||
|43L 7s | |||
|- | |||
|51 | |||
|42L 9s | |||
|- | |||
|52 | |||
|41L 11s | |||
|- | |||
|53 | |||
|40L 13s | |||
|- | |||
|54 | |||
|39L 15s | |||
|- | |||
|55 | |||
|38L 17s | |||
|- | |||
|56 | |||
|37L 19s | |||
|- | |||
|57 | |||
|36L 21s | |||
|- | |||
|58 | |||
|35L 23s | |||
|- | |||
|59 | |||
|34L 25s | |||
|- | |||
|60 | |||
|33L 27s | |||
|- | |||
|61 | |||
|32L 29s | |||
|- | |||
|62 | |||
|31L 31s | |||
|- | |||
|63 | |||
|30L 33s | |||
|- | |||
|64 | |||
|29L 35s | |||
|- | |||
|65 | |||
|28L 37s | |||
|- | |||
|66 | |||
|27L 39s | |||
|- | |||
|67 | |||
|26L 41s | |||
|- | |||
|68 | |||
|25L 43s | |||
|- | |||
|69 | |||
|24L 45s | |||
|- | |||
|70 | |||
|23L 47s | |||
|- | |||
|71 | |||
|22L 49s | |||
|- | |||
|72 | |||
|21L 51s | |||
|- | |||
|73 | |||
|20L 53s | |||
|- | |||
|74 | |||
|19L 55s | |||
|} |
Revision as of 18:00, 18 April 2021
The 93 equal division divides the octave into 93 equal parts of 12.903 cents each. 93 = 3 * 31, and 93 is a contorted 31 through the 7 limit. In the 11-limit the patent val tempers out 4000/3993 and in the 13-limit 144/143, 1188/1183 and 364/363. It provides the optimal patent val for the 11-limit prajapati and 13-limit kumhar temperaments, and the 11 and 13 limit 43&50 temperament.
Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710¢, 103.226¢, and 296.774¢ respectively), it also allows one to give a clearer harmonic identity to 31edo's excellent approximation of 13:17:19.
Since 93edo has a step of 12.903 cents, it also allows one to use its MOS scales as circulating temperaments, which it is the first edo to do.
Tones | Pattern | L:s |
---|---|---|
5 | 3L 2s | 19:18 |
6 | 3L 3s | 16:15 |
7 | 2L 5s | 14:13 |
8 | 5L 3s | 12:11 |
9 | 3L 6s | 11:10 |
10 | 3L 7s | 10:9 |
11 | 5L 6s | 9:8 |
12 | 9L 3s | 8:7 |
13 | 2L 11s | |
14 | 9L 5s | 7:6 |
15 | 3L 12s | |
16 | 13L 3s | 6:5 |
17 | 8L 9s | |
18 | 3L 15s | |
19 | 17L 2s | 5:4 |
20 | 13L 7s | |
21 | 9L 12s | |
22 | 5L 17s | |
23 | 1L 22s | |
24 | 21L 3s | 4:3 |
25 | 18L 7s | |
26 | 15L 11s | |
27 | 12L 15s | |
28 | 9L 19s | |
29 | 6L 23s | |
30 | 3L 27s | |
31 | 31edo | equal |
32 | 29L 3s | 3:2 |
33 | 27L 6s | |
34 | 25L 9s | |
35 | 23L 12s | |
36 | 21L 15s | |
37 | 19L 18s | |
38 | 17L 21s | |
39 | 15L 24s | |
40 | 13L 27s | |
41 | 12L 29s | |
42 | 9L 33s | |
43 | 7L 36s | |
44 | 5L 39s | |
45 | 3L 42s | |
46 | 1L 45s | |
47 | 46L 1s | 2:1 |
48 | 45L 3s | |
49 | 44L 5s | |
50 | 43L 7s | |
51 | 42L 9s | |
52 | 41L 11s | |
53 | 40L 13s | |
54 | 39L 15s | |
55 | 38L 17s | |
56 | 37L 19s | |
57 | 36L 21s | |
58 | 35L 23s | |
59 | 34L 25s | |
60 | 33L 27s | |
61 | 32L 29s | |
62 | 31L 31s | |
63 | 30L 33s | |
64 | 29L 35s | |
65 | 28L 37s | |
66 | 27L 39s | |
67 | 26L 41s | |
68 | 25L 43s | |
69 | 24L 45s | |
70 | 23L 47s | |
71 | 22L 49s | |
72 | 21L 51s | |
73 | 20L 53s | |
74 | 19L 55s |