37edo: Difference between revisions
→Intervals: Removed pions column |
|||
Line 56: | Line 56: | ||
! | Degrees of 37edo | ! | Degrees of 37edo | ||
! | Cents Value | ! | Cents Value | ||
!7mus | !7mus | ||
! | Approximate Ratios | ! | Approximate Ratios | ||
Line 78: | Line 77: | ||
3/2's) | 3/2's) | ||
|- | |- | ||
| | | 0 | ||
|0.00 | |||
|0 | |||
| | 1/1 | | | 1/1 | ||
| | | | | | ||
Line 87: | Line 88: | ||
| | 1 | | | 1 | ||
| | 32.43 | | | 32.43 | ||
|41.51 (29.83<sub>16</sub>) | |41.51 (29.83<sub>16</sub>) | ||
| | | | | | ||
Line 97: | Line 97: | ||
| | 2 | | | 2 | ||
| | 64.865 | | | 64.865 | ||
|83.03 (53.07<sub>16</sub>) | |83.03 (53.07<sub>16</sub>) | ||
| | 28/27, 27/26 | | | 28/27, 27/26 | ||
Line 107: | Line 106: | ||
| | 3 | | | 3 | ||
| | 97.3 | | | 97.3 | ||
|124.54 (7C.8B<sub>16</sub>) | |124.54 (7C.8B<sub>16</sub>) | ||
| | | | | | ||
Line 117: | Line 115: | ||
| | 4 | | | 4 | ||
| | 129.73 | | | 129.73 | ||
|166.05 (A6.0E<sub>16</sub>) | |166.05 (A6.0E<sub>16</sub>) | ||
| | 14/13 | | | 14/13 | ||
Line 127: | Line 124: | ||
| | 5 | | | 5 | ||
| | 162.16 | | | 162.16 | ||
|207.57 (CF.91<sub>16</sub>) | |207.57 (CF.91<sub>16</sub>) | ||
| | 11/10 | | | 11/10 | ||
Line 137: | Line 133: | ||
| | 6 | | | 6 | ||
| | 194.595 | | | 194.595 | ||
|249.08 (F9.14<sub>16</sub>) | |249.08 (F9.14<sub>16</sub>) | ||
| | | | | | ||
Line 147: | Line 142: | ||
| | 7 | | | 7 | ||
| | 227.03 | | | 227.03 | ||
|290.595 (122.98<sub>16</sub>) | |290.595 (122.98<sub>16</sub>) | ||
| | 8/7 | | | 8/7 | ||
Line 157: | Line 151: | ||
| | 8 | | | 8 | ||
| | 259.46 | | | 259.46 | ||
|332.11 (14C.1C<sub>16</sub>) | |332.11 (14C.1C<sub>16</sub>) | ||
| | | | | | ||
Line 167: | Line 160: | ||
| | 9 | | | 9 | ||
| | 291.89 | | | 291.89 | ||
|373.63 (175.9F<sub>16</sub>) | |373.63 (175.9F<sub>16</sub>) | ||
| | 13/11, 32/27 | | | 13/11, 32/27 | ||
Line 177: | Line 169: | ||
| | 10 | | | 10 | ||
| | 324.32 | | | 324.32 | ||
|415.135 (19F.23<sub>16</sub>) | |415.135 (19F.23<sub>16</sub>) | ||
| | | | | | ||
Line 187: | Line 178: | ||
| | 11 | | | 11 | ||
| | 356.76 | | | 356.76 | ||
|456.65 (1C8.A6<sub>16</sub>) | |456.65 (1C8.A6<sub>16</sub>) | ||
| | 16/13, 27/22 | | | 16/13, 27/22 | ||
Line 197: | Line 187: | ||
| | 12 | | | 12 | ||
| | 389.19 | | | 389.19 | ||
|498.16 (1F2.298<sub>16</sub>) | |498.16 (1F2.298<sub>16</sub>) | ||
| | 5/4 | | | 5/4 | ||
Line 207: | Line 196: | ||
| | 13 | | | 13 | ||
| | 421.62 | | | 421.62 | ||
|539.68 (21B.AD<sub>16</sub>) | |539.68 (21B.AD<sub>16</sub>) | ||
| | 14/11 | | | 14/11 | ||
Line 217: | Line 205: | ||
| | 14 | | | 14 | ||
| | 454.05 | | | 454.05 | ||
|581.19 (245.3<sub>16</sub>) | |581.19 (245.3<sub>16</sub>) | ||
| | 13/10 | | | 13/10 | ||
Line 227: | Line 214: | ||
| | 15 | | | 15 | ||
| | 486.49 | | | 486.49 | ||
|622.7 (26E.B4<sub>16</sub>) | |622.7 (26E.B4<sub>16</sub>) | ||
| | | | | | ||
Line 237: | Line 223: | ||
| | 16 | | | 16 | ||
| | 518.92 | | | 518.92 | ||
|664.22 (298.37<sub>16</sub>) | |664.22 (298.37<sub>16</sub>) | ||
| | 27/20 | | | 27/20 | ||
Line 247: | Line 232: | ||
| | 17 | | | 17 | ||
| | 551.35 | | | 551.35 | ||
|705.73 (2C1.BB<sub>16</sub>) | |705.73 (2C1.BB<sub>16</sub>) | ||
| | 11/8 | | | 11/8 | ||
Line 257: | Line 241: | ||
| | 18 | | | 18 | ||
| | 583.78 | | | 583.78 | ||
|747.24 (2EB.3E<sub>16</sub>) | |747.24 (2EB.3E<sub>16</sub>) | ||
| | 7/5 | | | 7/5 | ||
Line 267: | Line 250: | ||
| | 19 | | | 19 | ||
| | 616.22 | | | 616.22 | ||
|788.76 (314.C2<sub>16</sub>) | |788.76 (314.C2<sub>16</sub>) | ||
| | 10/7 | | | 10/7 | ||
Line 277: | Line 259: | ||
| | 20 | | | 20 | ||
| | 648.65 | | | 648.65 | ||
|830.27 (33E.45<sub>16</sub>) | |830.27 (33E.45<sub>16</sub>) | ||
| | 16/11 | | | 16/11 | ||
Line 287: | Line 268: | ||
| | 21 | | | 21 | ||
| | 681.08 | | | 681.08 | ||
|871.78 (367.C9<sub>16</sub>) | |871.78 (367.C9<sub>16</sub>) | ||
| | 40/27 | | | 40/27 | ||
Line 297: | Line 277: | ||
| | 22 | | | 22 | ||
| | 713.51 | | | 713.51 | ||
|913.3 (391.4C<sub>16</sub>) | |913.3 (391.4C<sub>16</sub>) | ||
| | | | | | ||
Line 307: | Line 286: | ||
| | 23 | | | 23 | ||
| | 745.95 | | | 745.95 | ||
|954.81 (3BA.D<sub>16</sub>) | |954.81 (3BA.D<sub>16</sub>) | ||
| | 20/13 | | | 20/13 | ||
Line 317: | Line 295: | ||
| | 24 | | | 24 | ||
| | 778.38 | | | 778.38 | ||
|996.32 (3E4.53<sub>16</sub>) | |996.32 (3E4.53<sub>16</sub>) | ||
| | 11/7 | | | 11/7 | ||
Line 327: | Line 304: | ||
| | 25 | | | 25 | ||
| | 810.81 | | | 810.81 | ||
|1037.84 (40D.D68<sub>16</sub>) | |1037.84 (40D.D68<sub>16</sub>) | ||
| | 8/5 | | | 8/5 | ||
Line 337: | Line 313: | ||
| | 26 | | | 26 | ||
| | 843.24 | | | 843.24 | ||
|1079.35 (437.56<sub>16</sub>) | |1079.35 (437.56<sub>16</sub>) | ||
| | 13/8, 44/27 | | | 13/8, 44/27 | ||
Line 347: | Line 322: | ||
| | 27 | | | 27 | ||
| | 875.68 | | | 875.68 | ||
|1120.865 (460.DE<sub>16</sub>) | |1120.865 (460.DE<sub>16</sub>) | ||
| | | | | | ||
Line 357: | Line 331: | ||
| | 28 | | | 28 | ||
| | 908.11 | | | 908.11 | ||
|1162.38 (48A.61<sub>16</sub>) | |1162.38 (48A.61<sub>16</sub>) | ||
| | 22/13, 27/16 | | | 22/13, 27/16 | ||
Line 367: | Line 340: | ||
| | 29 | | | 29 | ||
| | 940.54 | | | 940.54 | ||
|1203.89 (4B3.E4<sub>16</sub>) | |1203.89 (4B3.E4<sub>16</sub>) | ||
| | | | | | ||
Line 377: | Line 349: | ||
| | 30 | | | 30 | ||
| | 972.97 | | | 972.97 | ||
|1245.405 (4DD.68<sub>16</sub>) | |1245.405 (4DD.68<sub>16</sub>) | ||
| | 7/4 | | | 7/4 | ||
Line 387: | Line 358: | ||
| | 31 | | | 31 | ||
| | 1005.405 | | | 1005.405 | ||
|1286.92 (506.EB<sub>16</sub>) | |1286.92 (506.EB<sub>16</sub>) | ||
| | | | | | ||
Line 397: | Line 367: | ||
| | 32 | | | 32 | ||
| | 1037.84 | | | 1037.84 | ||
|1328.43 (530.6F<sub>16</sub>) | |1328.43 (530.6F<sub>16</sub>) | ||
| | 11/6 | | | 11/6 | ||
Line 407: | Line 376: | ||
| | 33 | | | 33 | ||
| | 1070.27 | | | 1070.27 | ||
|1369.95 (559.F2<sub>16</sub>) | |1369.95 (559.F2<sub>16</sub>) | ||
| | 13/7 | | | 13/7 | ||
Line 417: | Line 385: | ||
| | 34 | | | 34 | ||
| | 1102.7 | | | 1102.7 | ||
|1411.46 (583.76<sub>16</sub>) | |1411.46 (583.76<sub>16</sub>) | ||
| | | | | | ||
Line 427: | Line 394: | ||
| | 35 | | | 35 | ||
| | 1135.135 | | | 1135.135 | ||
|1452.97 (5AC.F9<sub>16</sub>) | |1452.97 (5AC.F9<sub>16</sub>) | ||
| | 27/14, 52/27 | | | 27/14, 52/27 | ||
Line 437: | Line 403: | ||
| | 36 | | | 36 | ||
| | 1167.57 | | | 1167.57 | ||
|1494.49 (5D6.7D<sub>16</sub>) | |1494.49 (5D6.7D<sub>16</sub>) | ||
| | | | | | ||
Line 447: | Line 412: | ||
|3 | |3 | ||
|1200 | |1200 | ||
|1536 (600<sub>16</sub>) | |1536 (600<sub>16</sub>) | ||
|2/ | |2/ |
Revision as of 13:46, 12 December 2019
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th prime edo, following 31edo and coming before 41edo.
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of porcupine temperament. (It is the optimal patent val for porcupinefish, which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (gorgo/laconic).
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.
Subgroups
37edo offers close approximations to harmonics 5, 7, 11, and 13 [and a usable approximation of 9 as well].
12\37 = 389.2 cents
30\37 = 973.0 cents
17\37 = 551.4 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger 3*37 subgroup 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.
The Two Fifths
The just perfect fifth of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
The flat fifth is 21\37 = 681.1 cents (37b val)
The sharp fifth is 22\37 = 713.5 cents
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of Biome temperament.
Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).
Intervals
Degrees of 37edo | Cents Value | 7mus | Approximate Ratios
of 2.5.7.11.13.27 subgroup |
Ratios of 3 with
a sharp 3/2 |
Ratios of 3 with
a flat 3/2 |
Ratios of 9 with
194.59¢ 9/8 |
Ratios of 9 with
227.03¢ 9/8 (two sharp 3/2's) |
---|---|---|---|---|---|---|---|
0 | 0.00 | 0 | 1/1 | ||||
1 | 32.43 | 41.51 (29.8316) | |||||
2 | 64.865 | 83.03 (53.0716) | 28/27, 27/26 | ||||
3 | 97.3 | 124.54 (7C.8B16) | |||||
4 | 129.73 | 166.05 (A6.0E16) | 14/13 | 13/12 | 12/11 | ||
5 | 162.16 | 207.57 (CF.9116) | 11/10 | 12/11 | 13/12 | 10/9 | |
6 | 194.595 | 249.08 (F9.1416) | 9/8, 10/9 | ||||
7 | 227.03 | 290.595 (122.9816) | 8/7 | 9/8 | |||
8 | 259.46 | 332.11 (14C.1C16) | 7/6 | ||||
9 | 291.89 | 373.63 (175.9F16) | 13/11, 32/27 | 6/5, 7/6 | |||
10 | 324.32 | 415.135 (19F.2316) | 6/5 | 11/9 | |||
11 | 356.76 | 456.65 (1C8.A616) | 16/13, 27/22 | 11/9 | |||
12 | 389.19 | 498.16 (1F2.29816) | 5/4 | ||||
13 | 421.62 | 539.68 (21B.AD16) | 14/11 | 9/7 | |||
14 | 454.05 | 581.19 (245.316) | 13/10 | 9/7 | |||
15 | 486.49 | 622.7 (26E.B416) | 4/3 | ||||
16 | 518.92 | 664.22 (298.3716) | 27/20 | 4/3 | |||
17 | 551.35 | 705.73 (2C1.BB16) | 11/8 | 18/13 | |||
18 | 583.78 | 747.24 (2EB.3E16) | 7/5 | 18/13 | |||
19 | 616.22 | 788.76 (314.C216) | 10/7 | 13/9 | |||
20 | 648.65 | 830.27 (33E.4516) | 16/11 | 13/9 | |||
21 | 681.08 | 871.78 (367.C916) | 40/27 | 3/2 | |||
22 | 713.51 | 913.3 (391.4C16) | 3/2 | ||||
23 | 745.95 | 954.81 (3BA.D16) | 20/13 | 14/9 | |||
24 | 778.38 | 996.32 (3E4.5316) | 11/7 | 14/9 | |||
25 | 810.81 | 1037.84 (40D.D6816) | 8/5 | ||||
26 | 843.24 | 1079.35 (437.5616) | 13/8, 44/27 | 18/11 | |||
27 | 875.68 | 1120.865 (460.DE16) | 5/3 | 18/11 | |||
28 | 908.11 | 1162.38 (48A.6116) | 22/13, 27/16 | 5/3, 12/7 | |||
29 | 940.54 | 1203.89 (4B3.E416) | 12/7 | ||||
30 | 972.97 | 1245.405 (4DD.6816) | 7/4 | 16/9 | |||
31 | 1005.405 | 1286.92 (506.EB16) | 16/9, 9/5 | ||||
32 | 1037.84 | 1328.43 (530.6F16) | 11/6 | 24/13 | 9/5 | ||
33 | 1070.27 | 1369.95 (559.F216) | 13/7 | 24/13 | 11/6 | ||
34 | 1102.7 | 1411.46 (583.7616) | |||||
35 | 1135.135 | 1452.97 (5AC.F916) | 27/14, 52/27 | ||||
36 | 1167.57 | 1494.49 (5D6.7D16) | |||||
3 | 1200 | 1536 (60016) | 2/ |
Scales
Linear temperaments
List of 37et rank two temperaments by badness
Generator | "Sharp 3/2" temperaments | "Flat 3/2" temperaments (37b val) |
---|---|---|
1\37 | ||
2\37 | Sycamore | |
3\37 | Passion | |
4\37 | Twothirdtonic | Negri |
5\37 | Porcupine/porcupinefish | |
6\37 | Roulette | |
7\37 | Semaja | Gorgo/Laconic |
8\37 | Semiphore | |
9\37 | ||
10\37 | ||
11\37 | Beatles | |
12\37 | Würschmidt (out-of-tune) | |
13\37 | ||
14\37 | Ammonite | |
15\37 | Ultrapyth, not superpyth | |
16\37 | Not mavila (this is "undecimation") | |
17\37 | Emka | |
18\37 |
Music in 37edo
Toccata Bianca 37edo by Aaron Krister Johnson
Shorn Brown play and Jellybear play by Andrew Heathwaite