55edo: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
'''55edo''' divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [http://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [http://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments. | '''55edo''' divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [http://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [http://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments. | ||
5-limit commas: 81/80, <31 1 -14| | 5-limit commas: 81/80, <31 1 -14|, <-165 220 55| | ||
7-limit commas: 31104/30625 6144/6125 81648/78125 16128/15625 28672/28125 33075/32768 83349/80000 1029/1000 686/675 10976/10935 16807/16384 84035/82944 | 7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944 | ||
11-limit commas: 59049/58564 74088/73205 46656/46585 21609/21296 12005/11979 19683/19360 243/242 3087/3025 5488/5445 19683/19250 1944/1925 45927/45056 2835/2816 35721/34375 7056/6875 12544/12375 7203/7040 2401/2376 24057/24010 72171/70000 891/875 176/175 2079/2048 385/384 3234/3125 17248/16875 26411/25600 26411/ | 11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580 | ||
13-limit commas: 59535/57122 29400/28561 29568/28561 29645/28561 24576/24167 99225/96668 24500/24167 50421/48334 45927/43940 2268/2197 2240/2197 57624/54925 61875/61516 57024/54925 11264/10985 72765/70304 13475/13182 22869/21970 6776/6591 20736/20449 20480/20449 84035/81796 91125/91091 65536/65065 15309/14872 1890/1859 5600/5577 9604/9295 59049/57967 58320/57967 4374/4225 864/845 512/507 11025/10816 6125/6084 21952/21125 16807/16224 84035/82134 66825/66248 90112/88725 56133/54080 693/676 1540/1521 26411/25350 58806/57967 58080/57967 88209/84500 4356/4225 7744/7605 88935/86528 33275/33124 27951/27040 9317/9126 58564/57967 43923/42250 17496/17303 87808/86515 55296/55055 25515/25168 1575/1573 64827/62920 4802/4719 98415/98098 59049/57200 729/715 144/143 18375/18304 18522/17875 10976/10725 84035/82368 59049/56875 11664/11375 2304/2275 4096/4095 1701/1664 105/104 42336/40625 25088/24375 21609/20800 2401/2340 9604/9477 72171/71344 2673/2600 66/65 352/351 13475/13312 33957/32500 15092/14625 81675/81536 58806/56875 11616/11375 61952/61425 68607/66560 847/832 4235/4212 35937/35672 1331/1300 5324/5265 58564/56875 85293/85184 13377/13310 85293/84700 15288/15125 31213/30976 67392/67375 28431/28160 34944/34375 4459/4400 4459/4455 28431/28000 351/350 79872/78125 66339/65536 51597/50000 637/625 10192/10125 31213/30720 31213/31104 30888/30625 1287/1280 81081/78125 16016/15625 49049/48000 49049/48600 14157/14000 33033/32768 77077/75000 51909/51200 17303/17280 75712/75625 8281/8250 41067/40960 31941/31250 9464/9375 57967/57600 91091/90000 61347/61250 79092/78125 | 13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125 | ||
==Intervals== | ==Intervals== | ||
Line 15: | Line 15: | ||
| | Degrees of 55-EDO | | | Degrees of 55-EDO | ||
| | Cents value | | | Cents value | ||
|pions | |||
|7mus | |||
| | Ratios it approximates | | | Ratios it approximates | ||
|- | |- | ||
| | 0 | | | 0 | ||
| | 0 | | colspan="3"| 0 | ||
| | 1/1 | | | 1/1 | ||
|- | |- | ||
| | 1 | | | 1 | ||
| | 21.818 | | | 21.818 | ||
| | 128/125 | |23.127 | ||
|27.927 (1B.ED6<sub>16</sub>) | |||
| | 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, ''81/80'' | |||
|- | |- | ||
| | 2 | | | 2 | ||
| | 43.636 | | | 43.636 | ||
| | | |46.2545 | ||
|55.8545 (37.DAC<sub>16</sub>) | |||
| |36/35 | |||
|- | |- | ||
| | 3 | | | 3 | ||
| | 65.455 | | | 65.455 | ||
| | | |69.382 | ||
|83.782 (53.C82<sub>16</sub>) | |||
| |28/27, ''25/24'' | |||
|- | |- | ||
| | 4 | | | 4 | ||
| | 87.273 | | | 87.273 | ||
| | 25/24 | |92.509 | ||
|111.709 (6F.B58<sub>16</sub>) | |||
| | 25/24, 21/20 | |||
|- | |- | ||
| | 5 | | | 5 | ||
| | 109.091 | | | 109.091 | ||
|115.636 | |||
|139.636 (8B.A2E8<sub>16</sub>) | |||
| | 16/15 | | | 16/15 | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 130.909 | | | 130.909 | ||
| | | |138.764 | ||
|167.564 (A7.905<sub>16</sub>) | |||
| |14/13, ''13/12'' | |||
|- | |- | ||
| | 7 | | | 7 | ||
| | 152.727 | | | 152.727 | ||
| | | |161.891 | ||
|195.491 (C3.7DA<sub>16</sub>) | |||
| |13/12, 12/11 | |||
|- | |- | ||
| | 8 | | | 8 | ||
| | 174. | | | 174.5455 | ||
| | | |185.018 | ||
|223.418 (DF.6B1<sub>16</sub>) | |||
| |11/10, ''10/9'' | |||
|- | |- | ||
| | 9 | | | 9 | ||
| | 196.364 | | | 196.364 | ||
|208.1455 | |||
|251.3455 (FB.587<sub>16</sub>) | |||
| | 9/8, 10/9 | | | 9/8, 10/9 | ||
|- | |- | ||
| | 10 | | | 10 | ||
| | 218.182 | | | 218.182 | ||
|231.273 | |||
|279.273 (117.467<sub>16</sub>) | |||
|17/15 | |||
|- | |- | ||
| | 11 | | | 11 | ||
| | 240. | | | 240 | ||
|254.4 | |||
|307.2 (133.333<sub>16</sub>) | |||
|8/7, 15/13 | |||
|- | |- | ||
| | 12 | | | 12 | ||
| | 261.818 | | | 261.818 | ||
|277.527 | |||
|335.127 (14F.209<sub>16</sub>) | |||
|7/6 | |||
|- | |- | ||
| | 13 | | | 13 | ||
| | 283.636 | | | 283.636 | ||
|300.6545 | |||
|363.0545 (16B.0DF<sub>16</sub>) | |||
|13/11 | |||
|- | |- | ||
| | 14 | | | 14 | ||
| | 305. | | | 305.4545 | ||
|323.782 | |||
|400.982 (190.FB48<sub>16</sub>) | |||
|6/5- | |||
|- | |- | ||
| | 15 | | | 15 | ||
| | 327.273 | | | 327.273 | ||
|346.909 | |||
|418.909 (1A2.E8C<sub>16</sub>) | |||
|6/5+ | |||
|- | |- | ||
| | 16 | | | 16 | ||
| | 349.091 | | | 349.091 | ||
|370.036 | |||
|446.836 (1BE.D62<sub>16</sub>) | |||
|11/9, 27/22 | |||
|- | |- | ||
| | 17 | | | 17 | ||
| | 370.909 | | | 370.909 | ||
|393.164 | |||
|474.763 (1DA.C56<sub>16</sub>) | |||
|16/13 | |||
|- | |- | ||
| | 18 | | | 18 | ||
| | 392.727 | | | 392.727 | ||
|416.291 | |||
|502.691 (1F4.A0E<sub>16</sub>) | |||
|5/4 | |||
|- | |- | ||
| | 19 | | | 19 | ||
| | 414. | | | 414.5455 | ||
|439.418 | |||
|530.618 (212.9ED<sub>16</sub>) | |||
|14/11 | |||
|- | |- | ||
| | 20 | | | 20 | ||
| | 436.364 | | | 436.364 | ||
|462.5455 | |||
|558.5455 (22E.8BA<sub>16</sub>) | |||
|9/7 | |||
|- | |- | ||
| | 21 | | | 21 | ||
| | 458.182 | | | 458.182 | ||
|485.673 | |||
|586.473 (54A.79<sub>16</sub>) | |||
|13/10 | |||
|- | |- | ||
| | 22 | | | 22 | ||
| | 480. | | | 480 | ||
|508.8 | |||
|614.4 (266.666<sub>16</sub>) | |||
|21/16 | |||
|- | |- | ||
| | 23 | | | 23 | ||
| | 501.818 | | | 501.818 | ||
|531.927 | |||
|642.327 (282.5508<sub>16</sub>) | |||
|4/3, 27/20 | |||
|- | |- | ||
| | 24 | | | 24 | ||
| | 523.636 | | | 523.636 | ||
|555.0545 | |||
|670.2545 (29E.413<sub>16</sub>) | |||
|''27/20'' | |||
|- | |- | ||
| | 25 | | | 25 | ||
| | 545. | | | 545.4545 | ||
|578.182 | |||
|698.182 (2BA.2E9<sub>16</sub>) | |||
|11/8 | |||
|- | |- | ||
| | 26 | | | 26 | ||
| | 567.273 | | | 567.273 | ||
|601.309 | |||
|726.109 (2D6.1BF<sub>16</sub>) | |||
|18/13, 25/18 | |||
|- | |- | ||
| | 27 | | | 27 | ||
| | 589.091 | | | 589.091 | ||
|624.436 | |||
|754.036 (2F2.095<sub>16</sub>) | |||
|7/5 | |||
|- | |- | ||
| | 28 | | | 28 | ||
| | 610.909 | | | 610.909 | ||
|647.564 | |||
| | |||
|10/7 | |||
|- | |- | ||
| | 29 | | | 29 | ||
| | 632.727 | | | 632.727 | ||
|670.691 | |||
| | |||
|13/9, 36/25 | |||
|- | |- | ||
| | 30 | | | 30 | ||
| | 654. | | | 654.5455 | ||
|693.818 | |||
|837.818 (345.D17<sub>16</sub>) | |||
|16/11 | |||
|- | |- | ||
| | 31 | | | 31 | ||
| | 676.364 | | | 676.364 | ||
|716.9455 | |||
| | |||
|''40/27'' | |||
|- | |- | ||
| | 32 | | | 32 | ||
| | 698.182 | | | 698.182 | ||
|740.073 | |||
| | |||
|3/2, 40/27 | |||
|- | |- | ||
| | 33 | | | 33 | ||
| | 720. | | | 720 | ||
|763.2 | |||
|921.6 (399.99A<sub>16</sub>) | |||
|32/21 | |||
|- | |- | ||
| | 34 | | | 34 | ||
| | 741.818 | | | 741.818 | ||
|786.327 | |||
| | |||
|20/13 | |||
|- | |- | ||
| | 35 | | | 35 | ||
| | 763.636 | | | 763.636 | ||
|809.4545 | |||
|977.4545 (3D1.746<sub>16</sub>) | |||
|14/9 | |||
|- | |- | ||
| | 36 | | | 36 | ||
| | 785. | | | 785.4545 | ||
|832.582 | |||
| | |||
|11/7 | |||
|- | |- | ||
| | 37 | | | 37 | ||
| | 807.273 | | | 807.273 | ||
|855.709 | |||
| | |||
|8/5 | |||
|- | |- | ||
| | 38 | | | 38 | ||
| | 829.091 | | | 829.091 | ||
|878.836 | |||
| | |||
|13/8 | |||
|- | |- | ||
| | 39 | | | 39 | ||
| | 850.909 | | | 850.909 | ||
|901.964 | |||
| | |||
|18/11, 44/27 | |||
|- | |- | ||
| | 40 | | | 40 | ||
| | 872.727 | | | 872.727 | ||
|925.091 | |||
|1117.091 (45D.174<sub>16</sub>) | |||
|5/3- | |||
|- | |- | ||
| | 41 | | | 41 | ||
| | 894. | | | 894.5455 | ||
|948.218 | |||
| | |||
|5/3+ | |||
|- | |- | ||
| | 42 | | | 42 | ||
| | 916.364 | | | 916.364 | ||
|971.3455 | |||
| | |||
|22/13 | |||
|- | |- | ||
| | 43 | | | 43 | ||
| | 938.182 | | | 938.182 | ||
|994.473 | |||
| | |||
|12/7 | |||
|- | |- | ||
| | 44 | | | 44 | ||
| | 960. | | | 960 | ||
|1017.6 | |||
|1228.8 (4CC.CCD<sub>16</sub>) | |||
|7/4, 26/15 | |||
|- | |- | ||
| | 45 | | | 45 | ||
| | 981.818 | | | 981.818 | ||
|1040.727 | |||
|1256.727 (4E8.B99<sub>16</sub>) | |||
|30/17 | |||
|- | |- | ||
| | 46 | | | 46 | ||
| | 1003.636 | | | 1003.636 | ||
|1063.8545 | |||
| | |||
|16/9, 9/5 | |||
|- | |- | ||
| | 47 | | | 47 | ||
| | 1025. | | | 1025.4545 | ||
|1058.982 | |||
| | |||
|''9/5'', 20/11 | |||
|- | |- | ||
| | 48 | | | 48 | ||
| | 1047.273 | | | 1047.273 | ||
|1110.109 | |||
| | |||
|11/6, 24/13 | |||
|- | |- | ||
| | 49 | | | 49 | ||
| | 1069.091 | | | 1069.091 | ||
|1133.236 | |||
| | |||
|''24/13'', 13/7 | |||
|- | |- | ||
| | 50 | | | 50 | ||
| | 1090.909 | | | 1090.909 | ||
|1156.364 | |||
|1396.364 (574.5D18<sub>16</sub>) | |||
|15/8 | |||
|- | |- | ||
| | 51 | | | 51 | ||
| | 1112.727 | | | 1112.727 | ||
|1179.491 | |||
| | |||
|40/21, 48/25 | |||
|- | |- | ||
| | 52 | | | 52 | ||
| | 1134. | | | 1134.5455 | ||
|1202.618 | |||
| | |||
|56/27, ''48/25'' | |||
|- | |- | ||
| | 53 | | | 53 | ||
| | 1156.364 | | | 1156.364 | ||
|1225.7455 | |||
| | |||
|35/18 | |||
|- | |- | ||
| | 54 | | | 54 | ||
| | 1178.182 | | | 1178.182 | ||
|1248.873 | |||
| | |||
|125/64, 63/32, 128/65, 77/39, 180/91, 196/99, ''160/81'' | |||
|- | |- | ||
| | 55 | | | 55 | ||
| | 1200 | | | 1200 | ||
|1272 | |||
|1536 (600<sub>16</sub>) | |||
|2/1 | |||
|} | |} | ||
Revision as of 02:12, 4 April 2019
55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.
5-limit commas: 81/80, <31 1 -14|, <-165 220 55|
7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944
11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580
13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125
Intervals
Degrees of 55-EDO | Cents value | pions | 7mus | Ratios it approximates |
0 | 0 | 1/1 | ||
1 | 21.818 | 23.127 | 27.927 (1B.ED616) | 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, 81/80 |
2 | 43.636 | 46.2545 | 55.8545 (37.DAC16) | 36/35 |
3 | 65.455 | 69.382 | 83.782 (53.C8216) | 28/27, 25/24 |
4 | 87.273 | 92.509 | 111.709 (6F.B5816) | 25/24, 21/20 |
5 | 109.091 | 115.636 | 139.636 (8B.A2E816) | 16/15 |
6 | 130.909 | 138.764 | 167.564 (A7.90516) | 14/13, 13/12 |
7 | 152.727 | 161.891 | 195.491 (C3.7DA16) | 13/12, 12/11 |
8 | 174.5455 | 185.018 | 223.418 (DF.6B116) | 11/10, 10/9 |
9 | 196.364 | 208.1455 | 251.3455 (FB.58716) | 9/8, 10/9 |
10 | 218.182 | 231.273 | 279.273 (117.46716) | 17/15 |
11 | 240 | 254.4 | 307.2 (133.33316) | 8/7, 15/13 |
12 | 261.818 | 277.527 | 335.127 (14F.20916) | 7/6 |
13 | 283.636 | 300.6545 | 363.0545 (16B.0DF16) | 13/11 |
14 | 305.4545 | 323.782 | 400.982 (190.FB4816) | 6/5- |
15 | 327.273 | 346.909 | 418.909 (1A2.E8C16) | 6/5+ |
16 | 349.091 | 370.036 | 446.836 (1BE.D6216) | 11/9, 27/22 |
17 | 370.909 | 393.164 | 474.763 (1DA.C5616) | 16/13 |
18 | 392.727 | 416.291 | 502.691 (1F4.A0E16) | 5/4 |
19 | 414.5455 | 439.418 | 530.618 (212.9ED16) | 14/11 |
20 | 436.364 | 462.5455 | 558.5455 (22E.8BA16) | 9/7 |
21 | 458.182 | 485.673 | 586.473 (54A.7916) | 13/10 |
22 | 480 | 508.8 | 614.4 (266.66616) | 21/16 |
23 | 501.818 | 531.927 | 642.327 (282.550816) | 4/3, 27/20 |
24 | 523.636 | 555.0545 | 670.2545 (29E.41316) | 27/20 |
25 | 545.4545 | 578.182 | 698.182 (2BA.2E916) | 11/8 |
26 | 567.273 | 601.309 | 726.109 (2D6.1BF16) | 18/13, 25/18 |
27 | 589.091 | 624.436 | 754.036 (2F2.09516) | 7/5 |
28 | 610.909 | 647.564 | 10/7 | |
29 | 632.727 | 670.691 | 13/9, 36/25 | |
30 | 654.5455 | 693.818 | 837.818 (345.D1716) | 16/11 |
31 | 676.364 | 716.9455 | 40/27 | |
32 | 698.182 | 740.073 | 3/2, 40/27 | |
33 | 720 | 763.2 | 921.6 (399.99A16) | 32/21 |
34 | 741.818 | 786.327 | 20/13 | |
35 | 763.636 | 809.4545 | 977.4545 (3D1.74616) | 14/9 |
36 | 785.4545 | 832.582 | 11/7 | |
37 | 807.273 | 855.709 | 8/5 | |
38 | 829.091 | 878.836 | 13/8 | |
39 | 850.909 | 901.964 | 18/11, 44/27 | |
40 | 872.727 | 925.091 | 1117.091 (45D.17416) | 5/3- |
41 | 894.5455 | 948.218 | 5/3+ | |
42 | 916.364 | 971.3455 | 22/13 | |
43 | 938.182 | 994.473 | 12/7 | |
44 | 960 | 1017.6 | 1228.8 (4CC.CCD16) | 7/4, 26/15 |
45 | 981.818 | 1040.727 | 1256.727 (4E8.B9916) | 30/17 |
46 | 1003.636 | 1063.8545 | 16/9, 9/5 | |
47 | 1025.4545 | 1058.982 | 9/5, 20/11 | |
48 | 1047.273 | 1110.109 | 11/6, 24/13 | |
49 | 1069.091 | 1133.236 | 24/13, 13/7 | |
50 | 1090.909 | 1156.364 | 1396.364 (574.5D1816) | 15/8 |
51 | 1112.727 | 1179.491 | 40/21, 48/25 | |
52 | 1134.5455 | 1202.618 | 56/27, 48/25 | |
53 | 1156.364 | 1225.7455 | 35/18 | |
54 | 1178.182 | 1248.873 | 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, 160/81 | |
55 | 1200 | 1272 | 1536 (60016) | 2/1 |
Selected just intervals by error
The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).
Interval, complement | Error (abs., in cents) |
---|---|
9/7, 14/9 | 1.280 |
11/9, 18/11 | 1.683 |
12/11, 11/6 | 2.090 |
14/13, 13/7 | 2.611 |
16/15, 15/8 | 2.640 |
14/11, 11/7 | 2.963 |
4/3, 3/2 | 3.773 |
18/13, 13/9 | 3.890 |
13/10, 20/13 | 3.968 |
7/6, 12/7 | 5.053 |
13/11, 22/13 | 5.573 |
11/8, 16/11 | 5.863 |
5/4, 8/5 | 6.414 |
7/5, 10/7 | 6.579 |
9/8, 16/9 | 7.546 |
13/12, 24/13 | 7.664 |
15/13, 26/15 | 7.741 |
10/9, 9/5 | 7.858 |
15/11, 22/15 | 8.504 |
8/7, 7/4 | 8.826 |
11/10, 20/11 | 9.541 |
6/5, 5/3 | 10.187 |
15/14, 28/15 | 10.352 |
16/13, 13/8 | 10.381 |
Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)
"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia