277edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Rework
ArrowHead294 (talk | contribs)
mNo edit summary
Line 16: Line 16:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
| {{monzo| -439 277 }}
| {{monzo| -439 277 }}
| {{mapping| 277 439 }}
| {{mapping| 277 439 }}
| 0.0473
| +0.0473
| 0.0473
| 0.0473
| 1.09
| 1.09
Line 36: Line 28:
| 32805/32768, {{monzo| -11 -37 30 }}
| 32805/32768, {{monzo| -11 -37 30 }}
| {{mapping| 277 439 643 }}
| {{mapping| 277 439 643 }}
| 0.1398
| +0.1398
| 0.1364
| 0.1364
| 3.15
| 3.15
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperaments
|-
|-
| 1
| 1
Line 55: Line 41:
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}

Revision as of 02:06, 16 November 2024

← 276edo 277edo 278edo →
Prime factorization 277 (prime)
Step size 4.33213 ¢ 
Fifth 162\277 (701.805 ¢)
Semitones (A1:m2) 26:21 (112.6 ¢ : 90.97 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

277edo is a good 5-limit tuning; however, it is inconsistent in the 7-odd-limit. The equal temperament tempers out 32805/32768 (schisma) and [-11 -37 30 in the 5-limit.

The patent val 277 439 643 778] tempers out 4375/4374, 65625/65536, and 829440/823543 in the 7-limit; 540/539, 6250/6237, 15488/15435, and 35937/35840 in the 11-limit; 625/624, 729/728, 1573/1568, 2080/2079, and 2200/2197 in the 13-limit. It supports pontiac.

The 277d val 277 439 643 777] tempers out 1029/1024, 10976/10935, and 48828125/48771072 in the 7-limit; 385/384, 441/440, 19712/19683, and 234375/234256 in the 11-limit; 625/624, 847/845, 1001/1000, and 1575/1573 in the 13-limit. It supports guiron and widefourth.

Prime harmonics

Approximation of prime harmonics in 277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.15 -0.75 +1.57 -1.14 -0.09 -0.98 +1.40 -0.12 +1.47 -1.35
Relative (%) +0.0 -3.5 -17.4 +36.3 -26.3 -2.2 -22.7 +32.4 -2.7 +33.9 -31.2
Steps
(reduced)
277
(0)
439
(162)
643
(89)
778
(224)
958
(127)
1025
(194)
1132
(24)
1177
(69)
1253
(145)
1346
(238)
1372
(264)

Subsets and supersets

277edo is the 59th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-439 277 | [277 439]] | +0.0473 | 0.0473 | 1.09 |- | 2.3.5 | 32805/32768, [-11 -37 30 | [277 439 643]] | +0.1398 | 0.1364 | 3.15 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 115\277 | 498.19 | 4/3 | Helmholtz Template:Rank-2 end Template:Orf