227edo: Difference between revisions
Jump to navigation
Jump to search
Note on 13-limit countercata tuning |
No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|227}} | {{EDO intro|227}} | ||
== Theory == | |||
The equal temperament tempers out 15625/15552 ([[15625/15552|kleisma]]) and {{monzo| 61 -37 -1 }} in the 5-limit; [[5120/5103]], [[65625/65536]], and 117649/116640 in the 7-limit, so that it [[support]]s [[countercata]]. In the 11-limit, it tempers out [[385/384]], 2200/2187, 3388/3375, and 12005/11979, so that it provides the [[optimal patent val]] for 11-limit countercata. In the 13-limit, it tempers out [[325/324]], [[352/351]], [[625/624]], [[676/675]], and [[847/845]], and again supplies a good tuning for 13-limit countercata, although [[140edo]] tunes it better in this case. | The equal temperament tempers out 15625/15552 ([[15625/15552|kleisma]]) and {{monzo| 61 -37 -1 }} in the 5-limit; [[5120/5103]], [[65625/65536]], and 117649/116640 in the 7-limit, so that it [[support]]s [[countercata]]. In the 11-limit, it tempers out [[385/384]], 2200/2187, 3388/3375, and 12005/11979, so that it provides the [[optimal patent val]] for 11-limit countercata. In the 13-limit, it tempers out [[325/324]], [[352/351]], [[625/624]], [[676/675]], and [[847/845]], and again supplies a good tuning for 13-limit countercata, although [[140edo]] tunes it better in this case. | ||
Line 11: | Line 11: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
227edo is the 49th [[prime edo]]. | 227edo is the 49th [[prime edo]]. | ||
==Regular temperament properties== | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" |[[Subgroup]] | |||
! rowspan="2" |[[Comma list|Comma List]] | |||
! rowspan="2" |[[Mapping]] | |||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | |||
! colspan="2" |Tuning Error | |||
|- | |||
![[TE error|Absolute]] (¢) | |||
![[TE simple badness|Relative]] (%) | |||
|- | |||
|2.3 | |||
|{{monzo|360 -227}} | |||
|{{val|227 360}} | |||
| -0.3561 | |||
| 0.3560 | |||
| 6.73 | |||
|- | |||
|2.3.5 | |||
|15625/15552, {{monzo|61 -37 -1}} | |||
|{{val|227 360 527}} | |||
| -0.1785 | |||
| 0.3842 | |||
| 7.27 | |||
|- | |||
|2.3.5.7 | |||
|5120/5103, 15625/15552, 65625/65536 | |||
|{{val|227 360 527 637}} | |||
| -0.0071 | |||
| 0.4461 | |||
| 8.44 | |||
|- | |||
|2.3.5.7.11 | |||
|385/384, 2200/2187, 3388/3375, 5120/5103 | |||
|{{val|227 360 527 637 785}} | |||
| +0.0832 | |||
| 0.4380 | |||
| 8.29 | |||
|- | |||
|2.3.5.7.11.13 | |||
|325/324, 352/351, 385/384, 625/624, 847/845 | |||
|{{val|227 360 527 637 785 840}} | |||
| +0.0693 | |||
| 0.4010 | |||
| 7.59 | |||
|- | |||
|2.3.5.7.11.13.17 | |||
|352/351, 595/594, 715/714, 847/845, 1001/1000, 3185/3179 | |||
|{{val|227 360 527 637 785 840 928}} | |||
| +0.0324 | |||
| 0.3821 | |||
| 7.23 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per 8ve | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
|1 | |||
|25\227 | |||
|132.16 | |||
|{{monzo|-38 5 13}} | |||
|[[Astro]] / [[kastro]] | |||
|- | |||
|1 | |||
|60\227 | |||
|317.18 | |||
|6/5 | |||
|[[Hanson]] / [[countercata]] | |||
|- | |||
|1 | |||
|94\227 | |||
|496.92 | |||
|4/3 | |||
|[[Undecental]] | |||
|} | |||
[[Category:Countercata]] | [[Category:Countercata]] |
Revision as of 10:37, 29 October 2023
← 226edo | 227edo | 228edo → |
Theory
The equal temperament tempers out 15625/15552 (kleisma) and [61 -37 -1⟩ in the 5-limit; 5120/5103, 65625/65536, and 117649/116640 in the 7-limit, so that it supports countercata. In the 11-limit, it tempers out 385/384, 2200/2187, 3388/3375, and 12005/11979, so that it provides the optimal patent val for 11-limit countercata. In the 13-limit, it tempers out 325/324, 352/351, 625/624, 676/675, and 847/845, and again supplies a good tuning for 13-limit countercata, although 140edo tunes it better in this case.
227edo is accurate for the 13th harmonic, as the denominator of a convergent to log213, after 10 and before 5231.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.13 | -0.41 | -1.43 | -1.54 | +0.00 | +0.77 | -1.48 | +0.80 | +1.26 | +2.10 |
Relative (%) | +0.0 | +21.4 | -7.8 | -27.0 | -29.1 | +0.0 | +14.6 | -28.0 | +15.1 | +23.8 | +39.7 | |
Steps (reduced) |
227 (0) |
360 (133) |
527 (73) |
637 (183) |
785 (104) |
840 (159) |
928 (20) |
964 (56) |
1027 (119) |
1103 (195) |
1125 (217) |
Subsets and supersets
227edo is the 49th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [360 -227⟩ | ⟨227 360] | -0.3561 | 0.3560 | 6.73 |
2.3.5 | 15625/15552, [61 -37 -1⟩ | ⟨227 360 527] | -0.1785 | 0.3842 | 7.27 |
2.3.5.7 | 5120/5103, 15625/15552, 65625/65536 | ⟨227 360 527 637] | -0.0071 | 0.4461 | 8.44 |
2.3.5.7.11 | 385/384, 2200/2187, 3388/3375, 5120/5103 | ⟨227 360 527 637 785] | +0.0832 | 0.4380 | 8.29 |
2.3.5.7.11.13 | 325/324, 352/351, 385/384, 625/624, 847/845 | ⟨227 360 527 637 785 840] | +0.0693 | 0.4010 | 7.59 |
2.3.5.7.11.13.17 | 352/351, 595/594, 715/714, 847/845, 1001/1000, 3185/3179 | ⟨227 360 527 637 785 840 928] | +0.0324 | 0.3821 | 7.23 |
Rank-2 temperaments
Periods per 8ve |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 25\227 | 132.16 | [-38 5 13⟩ | Astro / kastro |
1 | 60\227 | 317.18 | 6/5 | Hanson / countercata |
1 | 94\227 | 496.92 | 4/3 | Undecental |