379edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Review
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|379}}  
{{EDO intro|379}}
==Theory==
 
379 tempers out 4096000/4084101, [[5120/5103]] and [[2401/2400]] in the 7-limit; 2097152/2096325, 1953125/1951488, [[6250/6237]], 42875/42768, 5767168/5764801, 180224/180075, [[5632/5625]], 537109375/536870912, 422576/421875, 9453125/9437184, 166375/165888, 67110351/67108864, 3294225/3294172, 43923/43904, 102487/102400, 20614528/20588575, 644204/643125 and 781258401/781250000 in the 11-limit. It provides the optimal patent val for the [[subneutral]] temperament.
== Theory ==
Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[2401/2400]], [[5120/5103]], and [[10976/10935]] in the 7-limit; [[5632/5625]], [[6250/6237]], [[14641/14580]], 42875/42768, and 43923/43904 in the 11-limit. It [[support]]s the [[subneutral]] temperament.
 
=== Odd harmonics ===
{{Harmonics in equal|379}}
 
=== Subsets and supersets ===
379edo is the 75th [[prime edo]].
379edo is the 75th [[prime edo]].
{{Harmonics in equal|379}}
 
==Regular temperament properties==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3
|{{monzo| 601 -379}}
| {{monzo| 601 -379 }}
|{{val| 379 601}}
| {{mapping| 379 601 }}
| -0.2989
| -0.2989
|0.2988
| 0.2988
|9.43
| 9.43
|-
|-
|2.3.5
| 2.3.5
|{{monzo| 35 -25 2}}, {{monzo| 38 -2 -15}}
| {{monzo| 35 -25 2 }}, {{monzo| 38 -2 -15 }}
|{{val| 379​ 601 ​880}}
| {{mapping| 379​ 601 ​880 }}
| -0.1944
| -0.1944
|0.2852
| 0.2852
|9.01
| 9.01
|-
|-
|2.3.5.7
| 2.3.5.7
|5120/5103, 2401/2400, {{monzo| -23 -11 15 2}}
| 5120/5103, 2401/2400, {{monzo| -23 -11 15 2 }}
|{{val| 379​ 601​ 880​ 1064​}}
| {{mapping| 379​ 601​ 880​ 1064​} }
| -0.1493
| -0.1493
|0.2591
| 0.2591
|8.18
| 8.18
|-
|-
|2.3.5.7.11
| 2.3.5.7.11
|5120/5103, 5632/5625, 2401/2400, 166375/165888
| 2401/2400, 5120/5103, 5632/5625, 166375/165888
|{{val| 379 ​601 ​880​ 1064 ​1311​}}
| {{mapping| 379 ​601 ​880​ 1064 ​1311 ​}}
| -0.0967
| -0.0967
|0.2545
| 0.2545
|8.04
| 8.04
|-
|-
|2.3.5.7.11.13
| 2.3.5.7.11.13
|325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655
| 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655
|{{val| 379 ​601 ​880​ 1064 ​1311​ 1402}}
| {{mapping| 379 ​601 ​880​ 1064 ​1311​ 1402 }} (379)
| -0.014
| -0.014
|0.2969
| 0.2969
|9.38
| 9.38
|}
|}


Line 56: Line 62:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|61\379
| 61\379
|193.14
| 193.14
|262144/234375
| 262144/234375
|[[Luna]]
| [[Luna]]
|-
|-
|1
| 1
|110\379
| 110\379
|348.28
| 348.28
|57344/46875
| 57344/46875
|[[Subneutral]]
| [[Subneutral]]
|-
|-
|1
| 1
|111\379
| 111\379
|351.45
| 351.45
|49/40
| 49/40
|[[Hemififths]]
| [[Hemififths]]
|-
|-
|1
| 1
|143\379
| 143\379
|452.77
| 452.77
|162/125
| 162/125
|[[Maja]]
| [[Maja]] (5-limit)
|-
|-
|1
| 1
|221\379
| 221\379
|699.74
| 699.74
|8192/6137
| 8192/6137
|[[Langwidge]]
| [[Langwidge]]
|}
|}


==Scales==
== Scales ==
*[[Subneutral31]]
* [[Subneutral31]]


==Music==
== Music ==
*[https://www.youtube.com/watch?v=SDE2Nb7crIU Subneutral Funk] by Francium
; [[User:Francium|Francium]]
* [https://www.youtube.com/watch?v=SDE2Nb7crIU ''Subneutral Funk''] (2023)

Revision as of 14:23, 9 November 2023

← 378edo 379edo 380edo →
Prime factorization 379 (prime)
Step size 3.16623 ¢ 
Fifth 222\379 (702.902 ¢)
Semitones (A1:m2) 38:27 (120.3 ¢ : 85.49 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

Using the patent val, the equal temperament tempers out 2401/2400, 5120/5103, and 10976/10935 in the 7-limit; 5632/5625, 6250/6237, 14641/14580, 42875/42768, and 43923/43904 in the 11-limit. It supports the subneutral temperament.

Odd harmonics

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
Relative (%) +29.9 -1.1 +1.2 -40.2 -12.5 -46.7 +28.8 -14.8 +3.5 +31.2 -43.0
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

Subsets and supersets

379edo is the 75th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [601 -379 [379 601]] -0.2989 0.2988 9.43
2.3.5 [35 -25 2, [38 -2 -15 [379​ 601 ​880]] -0.1944 0.2852 9.01
2.3.5.7 5120/5103, 2401/2400, [-23 -11 15 2 379​ 601​ 880​ 1064​} } -0.1493 0.2591 8.18
2.3.5.7.11 2401/2400, 5120/5103, 5632/5625, 166375/165888 [379 ​601 ​880​ 1064 ​1311 ​]] -0.0967 0.2545 8.04
2.3.5.7.11.13 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655 [379 ​601 ​880​ 1064 ​1311​ 1402]] (379) -0.014 0.2969 9.38

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 61\379 193.14 262144/234375 Luna
1 110\379 348.28 57344/46875 Subneutral
1 111\379 351.45 49/40 Hemififths
1 143\379 452.77 162/125 Maja (5-limit)
1 221\379 699.74 8192/6137 Langwidge

Scales

Music

Francium