255edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Line 10: Line 10:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! rowspan="2" | Optimal 8ve <br>Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 34: Line 34:
|-
|-
| 2.3.5.7
| 2.3.5.7
| 1687/16807, 19683/19600, 65625/65536
| 16875/16807, 19683/19600, 65625/65536
| [{{val| 255 404 592 716 }}]
| [{{val| 255 404 592 716 }}]
| +0.117
| +0.117
Line 52: Line 52:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 106: Line 106:
|}
|}


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Mirkat]]
[[Category:Mirkat]]

Revision as of 08:25, 8 May 2023

← 254edo 255edo 256edo →
Prime factorization 3 × 5 × 17
Step size 4.70588 ¢ 
Fifth 149\255 (701.176 ¢)
Semitones (A1:m2) 23:20 (108.2 ¢ : 94.12 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

255et tempers out the parakleisma, [8 14 -13, and the septendecima, [-52 -17 34, in the 5-limit. In the 7-limit it tempers out cataharry, 19683/19600, mirkwai, 16875/16807 and horwell, 65625/65536, so that it supports the mirkat temperament, and in fact provides the optimal patent val. It also gives the optimal patent val for mirkat in the 11-limit, tempering out 540/539, 1375/1372, 3025/3024 and 8019/8000. In the 13-limit it tempers out 847/845, 625/624, 1575/1573 and 1716/1715.

Prime harmonics

Approximation of prime harmonics in 255edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.78 -0.43 +0.59 -0.73 +1.83 -1.43 -1.04 +2.31 +1.01 -1.51
Relative (%) +0.0 -16.5 -9.2 +12.4 -15.5 +38.8 -30.3 -22.2 +49.2 +21.5 -32.0
Steps
(reduced)
255
(0)
404
(149)
592
(82)
716
(206)
882
(117)
944
(179)
1042
(22)
1083
(63)
1154
(134)
1239
(219)
1263
(243)

Regular temperament properties

Subgroup Comma List Mapping Optimal 8ve
Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-404 255 [255 404]] +0.246 0.246 5.22
2.3.5 [8 14 -13, [-36 11 8 [255 404 592]] +0.226 0.203 4.30
2.3.5.7 16875/16807, 19683/19600, 65625/65536 [255 404 592 716]] +0.117 0.257 5.46
2.3.5.7.11 540/539, 1375/1372, 8019/8000, 65625/65536 [255 404 592 716 882]] +0.136 0.233 4.95

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 39\255 183.53 10/9 Mirkat (255f)
1 52\255 244.71 15/13 Subsemifourth (255)
1 67\255 315.29 6/5 Parakleismic (5-limit)
1 74\255 348.24 11/9 Eris (255)
3 82\255
(3\255)
385.88
(14.12)
5/4
(126/125)
Mutt (7-limit)
5 53\255
(2\255)
249.41
(9.41)
81/70
(176/175)
Hemipental / hemipent (255) / hemipentalis (255f)
5 106\255
(4\255)
498.82
(18.82)
4/3
(81/80)
Pental (5-limit)
17 53\255
(7\255)
249.41
(32.94)
[-25 -9 17
(1990656/1953125)
Chlorine (5-limit)