72edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>TallKite
**Imported revision 621464699 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
__FORCETOC__
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
-----
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-11 21:21:07 UTC</tt>.<br>
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or ''moria''. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic,_Turkish,_Persian|Arabic]] music, and has itself been used to tune Turkish music.
: The original revision id was <tt>621464699</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[xenharmonic/24edo|24-tone equal temperament]], a common and standard tuning of [[xenharmonic/Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.


Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[xenharmonic/96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.


72-tone equal temperament approximates [[xenharmonic/11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[xenharmonic/17-limit|17-limit]], and is the ninth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit|17-limit]], and is the ninth [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.


72 is an excellent tuning for [[xenharmonic/Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[xenharmonic/Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
72 is an excellent tuning for [[Gamelismic_clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel_family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.


=Commas=  
=Commas=


Commas tempered out by 72edo include...
Commas tempered out by 72edo include...


||~ 3-limit ||
{| class="wikitable"
|| Pythagorean comma = 531441/524288 = |-19 12&gt; ||
|-
! | 3-limit
|-
| | Pythagorean comma = 531441/524288 = |-19 12&gt;
|}
 
{| class="wikitable"
|-
! | 5-limit
|-
| | kleisma = 15625/15552 = |-6 -5 6&gt;


||~ 5-limit ||
|| kleisma = 15625/15552 = |-6 -5 6&gt;
ampersand = 34171875/33554432 = |-25 7 6&gt;
ampersand = 34171875/33554432 = |-25 7 6&gt;
graviton = 129140163/128000000 = |-13 17 -6&gt;
graviton = 129140163/128000000 = |-13 17 -6&gt;
ennealimma = 7629394531250/7625597484987 = |1 -27 18&gt; ||


||~ 7-limit ||~ 11-limit ||~ 13-limit ||
ennealimma = 7629394531250/7625597484987 = |1 -27 18&gt;
|| ...............................
|}
 
{| class="wikitable"
|-
! | 7-limit
! | 11-limit
! | 13-limit
|-
| | ...............................
 
225/224
225/224
1029/1024
1029/1024
2401/2400
2401/2400
4375/4374
4375/4374
16875/16807
16875/16807
19683/19600
19683/19600
420175/419904
420175/419904
250047/250000 || .......................
 
250047/250000
| | .......................
 
243/242
243/242
385/384
385/384
441/440
441/440
540/539
540/539
1375/1372
1375/1372
3025/3024
3025/3024
4000/3993
4000/3993
6250/6237
6250/6237
9801/9800 || .......................
 
9801/9800
| | .......................
 
169/168
169/168
325/324
325/324
351/350
351/350
364/363
364/363
625/624
625/624
676/675
676/675
729/728
729/728
1001/1000
1001/1000
1575/1573
1575/1573
1716/1715
1716/1715
2080/2079
2080/2079
6656/6655 ||


=Temperaments=  
6656/6655
|}
 
=Temperaments=


It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.
It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.


See also [[List of edo-distinct 72et rank two temperaments]].
See also [[List_of_edo-distinct_72et_rank_two_temperaments|List of edo-distinct 72et rank two temperaments]].


=Harmonic Scale=
Mode 8 of the harmonic series -- [[overtone_scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).


=Harmonic Scale=
{| class="wikitable"
Mode 8 of the harmonic series -- [[xenharmonic/overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
|-
| | Overtones in "Mode 8":
| | 8
| |
| | 9
| |
| | 10
| |
| | 11
| |
| | 12
| |
| | 13
| |
| | 14
| |
| | 15
| |
| | 16
|-
| | ...as JI Ratio from 1/1:
| | 1/1
| |
| | 9/8
| |
| | 5/4
| |
| | 11/8
| |
| | 3/2
| |
| | 13/8
| |
| | 7/4
| |  
| | 15/8
| |
| | 2/1
|-
| | ...in cents:
| | 0
| |
| | 203.9
| |
| | 386.3
| |
| | 551.3
| |
| | 702.0
| |
| | 840.5
| |
| | 968.8
| |
| | 1088.3
| |
| | 1200.0
|-
| | Nearest degree of 72edo:
| | 0
| |
| | 12
| |
| | 23
| |
| | 33
| |
| | 42
| |
| | 50
| |
| | 58
| |
| | 65
| |
| | 72
|-
| | ...in cents:
| | 0
| |
| | 200.0
| |
| | 383.3
| |
| | 550.0
| |
| | 700.0
| |
| | 833.3
| |
| | 966.7
| |
| | 1083.3
| |
| | 1200.0
|-
| | Steps as Freq. Ratio:
| |
| | 9:8
| |
| | 10:9
| |
| | 11:10
| |
| | 12:11
| |
| | 13:12
| |
| | 14:13
| |
| | 15:14
| |
| | 16:15
| |
|-
| | ...in cents:
| |
| | 203.9
| |
| | 182.4
| |
| | 165.0
| |
| | 150.6
| |
| | 138.6
| |
| | 128.3
| |
| | 119.4
| |
| | 111.7
| |
|-
| | Nearest degree of 72edo:
| |
| | 12
| |
| | 11
| |
| | 10
| |
| | 9
| |
| | 8
| |
| | 8
| |
| | 7
| |
| | 7
| |
|-
| | ...in cents:
| |
| | 200.0
| |
| | 183.3
| |
| | 166.7
| |
| | 150.0
| |
| | 133.3
| |
| | 133.3
| |
| | 116.7
| |
| | 116.7
| |
|}


|| Overtones in "Mode 8": || 8 ||  || 9 ||  || 10 ||  || 11 ||  || 12 ||  || 13 ||  || 14 ||  || 15 ||  || 16 ||
=Intervals=
|| ...as JI Ratio from 1/1: || 1/1 ||  || 9/8 ||  || 5/4 ||  || 11/8 ||  || 3/2 ||  || 13/8 ||  || 7/4 ||  || 15/8 ||  || 2/1 ||
|| ...in cents: || 0 ||  || 203.9 ||  || 386.3 ||  || 551.3 ||  || 702.0 ||  || 840.5 ||  || 968.8 ||  || 1088.3 ||  || 1200.0 ||
|| Nearest degree of 72edo: || 0 ||  || 12 ||  || 23 ||  || 33 ||  || 42 ||  || 50 ||  || 58 ||  || 65 ||  || 72 ||
|| ...in cents: || 0 ||  || 200.0 ||  || 383.3 ||  || 550.0 ||  || 700.0 ||  || 833.3 ||  || 966.7 ||  || 1083.3 ||  || 1200.0 ||
|| Steps as Freq. Ratio: ||  || 9:8 ||  || 10:9 ||  || 11:10 ||  || 12:11 ||  || 13:12 ||  || 14:13 ||  || 15:14 ||  || 16:15 ||  ||
|| ...in cents: ||  || 203.9 ||  || 182.4 ||  || 165.0 ||  || 150.6 ||  || 138.6 ||  || 128.3 ||  || 119.4 ||  || 111.7 ||  ||
|| Nearest degree of 72edo: ||  || 12 ||  || 11 ||  || 10 ||  || 9 ||  || 8 ||  || 8 ||  || 7 ||  || 7 ||  ||
|| ...in cents: ||  || 200.0 ||  || 183.3 ||  || 166.7 ||  || 150.0 ||  || 133.3 ||  || 133.3 ||  || 116.7 ||  || 116.7 ||  ||


=Intervals=
{| class="wikitable"
|| degrees || cents value || approximate ratios (11-limit) ||||||= [[xenharmonic/Ups and Downs Notation|ups and downs ]][[xenharmonic/Ups and Downs Notation|notation]] ||
|-
|| 0 || 0 || 1/1 ||= P1 ||= perfect unison ||= D ||
| | degrees
|| 1 || 16.667 || 81/80 ||= ^1 ||= up unison ||= D^ ||
| | cents value
|| 2 || 33.333 || 45/44 ||= ^^ ||= double-up unison ||= D^^ ||
| | approximate ratios (11-limit)
|| 3 || 50 || 33/32 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;1, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m2 ||= triple-up unison,
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs ]][[Ups_and_Downs_Notation|notation]]
triple-down minor 2nd ||= D^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Ebv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|-
|| 4 || 66.667 || 25/24 ||= vvm2 ||= double-downminor 2nd ||= Ebvv ||
| | 0
|| 5 || 83.333 || 21/20 ||= vm2 ||= downminor 2nd ||= Ebv ||
| | 0
|| 6 || 100 || 35/33 ||= m2 ||= minor 2nd ||= Eb ||
| | 1/1
|| 7 || 116.667 || 15/14 ||= ^m2 ||= upminor 2nd ||= Eb^ ||
| style="text-align:center;" | P1
|| 8 || 133.333 || 27/25 ||= v~2 ||= downmid 2nd ||= Eb^^ ||
| style="text-align:center;" | perfect unison
|| 9 || 150 || 12/11 ||= ~2 ||= mid 2nd ||= Ev&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
| style="text-align:center;" | D
|| 10 || 166.667 || 11/10 ||= ^~2 ||= upmid 2nd ||= Evv ||
|-
|| 11 || 183.333 || 10/9 ||= vM2 ||= downmajor 2nd ||= Ev ||
| | 1
|| 12 || 200 || 9/8 ||= M2 ||= major 2nd ||= E ||
| | 16.667
|| 13 || 216.667 || 25/22 ||= ^M2 ||= upmajor 2nd ||= E^ ||
| | 81/80
|| 14 || 233.333 || 8/7 ||= ^^M2 ||= double-upmajor 2nd ||= E^^ ||
| style="text-align:center;" | ^1
|| 15 || 250 || 81/70 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M2, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m3 ||= triple-up major 2nd,
| style="text-align:center;" | up unison
triple-down minor 3rd ||= E^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Fv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
| style="text-align:center;" | D^
|| 16 || 266.667 || 7/6 ||= vvm3 ||= double-downminor 3rd ||= Fvv ||
|-
|| 17 || 283.333 || 33/28 ||= vm3 ||= downminor 3rd ||= Fv ||
| | 2
|| 18 || 300 || 25/21 ||= m3 ||= minor 3rd ||= F ||
| | 33.333
|| 19 || 316.667 || 6/5 ||= ^m3 ||= upminor 3rd ||= F^ ||
| | 45/44
|| 20 || 333.333 || 40/33 ||= v~3 ||= downmid 3rd ||= F^^ ||
| style="text-align:center;" | ^^
|| 21 || 350 || 11/9 ||= ~3 ||= mid 3rd ||= F^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
| style="text-align:center;" | double-up unison
|| 22 || 366.667 || 99/80 ||= ^~3 ||= upmid 3rd ||= F#vv ||
| style="text-align:center;" | D^^
|| 23 || 383.333 || 5/4 ||= vM3 ||= downmajor 3rd ||= F#v ||
|-
|| 24 || 400 || 44/35 ||= M3 ||= major 3rd ||= F# ||
| | 3
|| 25 || 416.667 || 14/11 ||= ^M3 ||= upmajor 3rd ||= F#^ ||
| | 50
|| 26 || 433.333 || 9/7 ||= ^^M3 ||= double-upmajor 3rd ||= F#^^ ||
| | 33/32
|| 27 || 450 || 35/27 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M3, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;4 ||= triple-up major 3rd,
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>1, v<span style="font-size: 90%; vertical-align: super;">3</span>m2
triple-down 4th ||= F#^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Gv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
| style="text-align:center;" | triple-up unison,
|| 28 || 466.667 || 21/16 ||= vv4 ||= double-down 4th ||= Gvv ||
|| 29 || 483.333 || 33/25 ||= v4 ||= down 4th ||= Gv ||
|| 30 || 500 || 4/3 ||= P4 ||= perfect 4th ||= G ||
|| 31 || 516.667 || 27/20 ||= ^4 ||= up 4th ||= G^ ||
|| 32 || 533.333 || 15/11 ||= ^^4 ||= double-up 4th ||= G^^ ||
|| 33 || 550 || 11/8 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;4 ||= triple-up 4th ||= G^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 34 || 566.667 || 25/18 ||= vvA4 ||= double-down aug 4th ||= G#vv ||
|| 35 || 583.333 || 7/5 ||= vA4, vd5 ||= downaug 4th, updim 5th ||= G#v, Abv ||
|| 36 || 600 || 99/70 ||= A4, d5 ||= aug 4th, dim 5th ||= G#, Ab ||
|| 37 || 616.667 || 10/7 ||= ^A4, ^d5 ||= upaug 4th, downdim 5th ||= G#^, Ab^ ||
|| 38 || 633.333 || 36/25 ||= ^^d5 ||= double-updim 5th ||= Ab^^ ||
|| 39 || 650 || 16/11 ||= v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;5 ||= triple-down 5th ||= Av&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 40 || 666.667 || 22/15 ||= vv5 ||= double-down 5th ||= Avv ||
|| 41 || 683.333 || 40/27 ||= v5 ||= down 5th ||= Av ||
|| 42 || 700 || 3/2 ||= P5 ||= perfect 5th ||= A ||
|| 43 || 716.667 || 50/33 ||= ^5 ||= up 5th ||= A^ ||
|| 44 || 733.333 || 32/21 ||= ^^5 ||= double-up 5th ||= A^^ ||
|| 45 || 750 || 54/35 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;5, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m6 ||= triple-up 5th,
triple-down minor 6th ||= A^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Bbv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 46 || 766.667 || 14/9 ||= vvm6 ||= double-downminor 6th ||= Bbvv ||
|| 47 || 783.333 || 11/7 ||= vm6 ||= downminor 6th ||= Bbv ||
|| 48 || 800 || 35/22 ||= m6 ||= minor 6th ||= Bb ||
|| 49 || 816.667 || 8/5 ||= ^m6 ||= upminor 6th ||= Bb^ ||
|| 50 || 833.333 || 81/50 ||= v~6 ||= downmid 6th ||= Bb^^ ||
|| 51 || 850 || 18/11 ||= ~6 ||= mid 6th ||= Bv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 52 || 866.667 || 33/20 ||= ^~6 ||= upmid 6th ||= Bvv ||
|| 53 || 883.333 || 5/3 ||= vM6 ||= downmajor 6th ||= Bv ||
|| 54 || 900 || 27/16 ||= M6 ||= major 6th ||= B ||
|| 55 || 916.667 || 56/33 ||= ^M6 ||= upmajor 6th ||= B^ ||
|| 56 || 933.333 || 12/7 ||= ^^M6 ||= double-upmajor 6th ||= B^^ ||
|| 57 || 950 || 121/70 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M6, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m7 ||= triple-up major 6th,
triple-down minor 7th ||= B^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Cv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 58 || 966.667 || 7/4 ||= vvm7 ||= double-downminor 7th ||= Cvv ||
|| 59 || 983.333 || 44/25 ||= vm7 ||= downminor 7th ||= Cv ||
|| 60 || 1000 || 16/9 ||= m7 ||= minor 7th ||= C ||
|| 61 || 1016.667 || 9/5 ||= ^m7 ||= upminor 7th ||= C^ ||
|| 62 || 1033.333 || 20/11 ||= v~7 ||= downmid 7th ||= C^^ ||
|| 63 || 1050 || 11/6 ||= ~7 ||= mid 7th ||= C^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 64 || 1066.667 || 50/27 ||= ^~7 ||= upmin 7th ||= C#vv ||
|| 65 || 1083.333 || 15/8 ||= vM7 ||= downmajor 7th ||= C#v ||
|| 66 || 1100 || 66/35 ||= M7 ||= major 7th ||= C# ||
|| 67 || 1116.667 || 21/11 ||= ^M7 ||= upmajor 7th ||= C#^ ||
|| 68 || 1133.333 || 27/14 ||= ^^M7 ||= double-upmajor 7th ||= C#^^ ||
|| 69 || 1150 || 35/18 ||= ^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M7, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;8 ||= triple-up major 7th,
triple-down octave ||= C#^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Dv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; ||
|| 70 || 1166.667 || 49/25 ||= vv8 ||= double-down octave ||= Dvv ||
|| 71 || 1183.333 || 99/50 ||= v8 ||= down octave ||= Dv ||
|| 72 || 1200 || 2/1 ||= P8 ||= perfect octave ||= D ||
Combining ups and downs notation with [[Kite's color notation|color notation]], qualities can be loosely associated with colors:
||~ quality ||~ color ||~ monzo format ||~ examples ||
||= double-down minor ||= blue ||= {a, b, 0, 1} ||= 7/6, 7/4 ||
||= minor ||= fourthward white ||= {a, b}, b &lt; -1 ||= 32/27, 16/9 ||
||= upminor ||= green ||= {a, b, -1} ||= 6/5, 9/5 ||
||= mid ||= jade ||= {a, b, 0, 0, 1} ||= 11/9, 11/6 ||
||= " ||= amber ||= {a, b, 0, 0, -1} ||= 12/11, 18/11 ||
||= downmajor ||= yellow ||= {a, b, 1} ||= 5/4, 5/3 ||
||= major ||= fifthward white ||= {a, b}, b &gt; 1 ||= 9/8, 27/16 ||
||= double-up major ||= red ||= {a, b, 0, -1} ||= 9/7, 12/7 ||
All 72edo chords can be named using ups and downs. Here are the blue, green, jade, yellow and red triads:
||~ color of the 3rd ||~ JI chord ||~ notes as edosteps ||~ notes of C chord ||~ written name ||~ spoken name ||
||= blue ||= 6:7:9 ||= 0-16-42 ||= C Ebvv G ||= C.vvm ||= C double-down minor ||
||= green ||= 10:12:15 ||= 0-19-42 ||= C Eb^ G ||= C.^m ||= C upminor ||
||= jade ||= 18:22:27 ||= 0-21-42 ||= C Ev&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; G ||= C~ ||= C mid ||
||= yellow ||= 4:5:6 ||= 0-23-42 ||= C Ev G ||= C.v ||= C downmajor or C dot down ||
||= red ||= 14:18:27 ||= 0-26-42 ||= C E^^ G ||= C.^^ ||= C double-upmajor or C dot double-up ||
For a more complete list, see [[xenharmonic/Ups and Downs Notation#Chord%20names%20in%20other%20EDOs|Ups and Downs Notation - Chord names in other EDOs]].


=Linear temperaments=  
triple-down minor 2nd
||~ Periods per octave ||~ Generator ||~ Names ||
| style="text-align:center;" | D^<span style="font-size: 90%; vertical-align: super;">3</span>, Ebv<span style="font-size: 90%; vertical-align: super;">3</span>
|| 1 || 1\72 || [[xenharmonic/quincy|quincy]] ||
|-
|| 1 || 5\72 || [[marvolo]] ||
| | 4
|| 1 || 7\72 || [[xenharmonic/miracle|miracle]]/benediction/manna ||
| | 66.667
|| 1 || 11\72 |||
| | 25/24
|| 1 || 13\72 ||  ||
| style="text-align:center;" | vvm2
|| 1 || 17\72 || [[xenharmonic/neominor|neominor]] ||
| style="text-align:center;" | double-downminor 2nd
|| 1 || 19\72 || [[xenharmonic/catakleismic|catakleismic]] ||
| style="text-align:center;" | Ebvv
|| 1 || 23\72 ||  ||
|-
|| 1 || 25\72 || [[xenharmonic/sqrtphi|sqrtphi]] ||
| | 5
|| 1 || 29\72 |||
| | 83.333
|| 1 || 31\72 || [[xenharmonic/marvo|marvo]]/zarvo ||
| | 21/20
|| 1 || 35\72 || [[xenharmonic/cotritone|cotritone]] ||
| style="text-align:center;" | vm2
|| 2 || 1\72 ||   ||
| style="text-align:center;" | downminor 2nd
|| 2 || 5\72 || [[xenharmonic/harry|harry]] ||
| style="text-align:center;" | Ebv
|| 2 || 7\72 ||  ||
|-
|| 2 || 11\72 || [[xenharmonic/unidec|unidec]]/hendec ||
| | 6
|| 2 || 13\72 || [[xenharmonic/wizard|wizard]]/lizard/gizzard ||
| | 100
|| 2 || 17\72 ||  ||
| | 35/33
|| 3 || 1\72 ||  ||
| style="text-align:center;" | m2
|| 3 || 5\72 || [[xenharmonic/tritikleismic|tritikleismic]] ||
| style="text-align:center;" | minor 2nd
|| 3 || 7\72 ||  ||
| style="text-align:center;" | Eb
|| 3 || 11\72 || [[xenharmonic/mirkat|mirkat]] ||
|-
|| 4 || 1\72 || [[xenharmonic/quadritikleismic|quadritikleismic]] ||
| | 7
|| 4 || 5\72 ||  ||
| | 116.667
|| 4 || 7\72 ||  ||
| | 15/14
|| 6 || 1\72 ||  ||
| style="text-align:center;" | ^m2
|| 6 || 5\72 ||  ||
| style="text-align:center;" | upminor 2nd
|| 8 || 1\72 || [[xenharmonic/octoid|octoid]] ||
| style="text-align:center;" | Eb^
|| 8 || 2\72 || [[xenharmonic/octowerck|octowerck]] ||
|-
|| 8 || 4\72 |||
| | 8
|| 9 || 1\72 ||  ||
| | 133.333
|| 9 || 3\72 || [[xenharmonic/ennealimmal|ennealimmal]]/ennealimmic ||
| | 27/25
|| 12 || 1\72 || [[xenharmonic/compton|compton]] ||
| style="text-align:center;" | v~2
|| 18 || 1\72 || [[xenharmonic/hemiennealimmal|hemiennealimmal]] ||
| style="text-align:center;" | downmid 2nd
|| 24 || 1\72 || [[xenharmonic/hours|hours]] ||
| style="text-align:center;" | Eb^^
|| 36 || 1\72 ||  ||
|-
| | 9
| | 150
| | 12/11
| style="text-align:center;" | ~2
| style="text-align:center;" | mid 2nd
| style="text-align:center;" | Ev<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 10
| | 166.667
| | 11/10
| style="text-align:center;" | ^~2
| style="text-align:center;" | upmid 2nd
| style="text-align:center;" | Evv
|-
| | 11
| | 183.333
| | 10/9
| style="text-align:center;" | vM2
| style="text-align:center;" | downmajor 2nd
| style="text-align:center;" | Ev
|-
| | 12
| | 200
| | 9/8
| style="text-align:center;" | M2
| style="text-align:center;" | major 2nd
| style="text-align:center;" | E
|-
| | 13
| | 216.667
| | 25/22
| style="text-align:center;" | ^M2
| style="text-align:center;" | upmajor 2nd
| style="text-align:center;" | E^
|-
| | 14
| | 233.333
| | 8/7
| style="text-align:center;" | ^^M2
| style="text-align:center;" | double-upmajor 2nd
| style="text-align:center;" | E^^
|-
| | 15
| | 250
| | 81/70
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3
| style="text-align:center;" | triple-up major 2nd,


=Z function=  
triple-down minor 3rd
72edo is the ninth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[xenharmonic/The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
| style="text-align:center;" | E^<span style="font-size: 90%; vertical-align: super;">3</span>, Fv<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 16
| | 266.667
| | 7/6
| style="text-align:center;" | vvm3
| style="text-align:center;" | double-downminor 3rd
| style="text-align:center;" | Fvv
|-
| | 17
| | 283.333
| | 33/28
| style="text-align:center;" | vm3
| style="text-align:center;" | downminor 3rd
| style="text-align:center;" | Fv
|-
| | 18
| | 300
| | 25/21
| style="text-align:center;" | m3
| style="text-align:center;" | minor 3rd
| style="text-align:center;" | F
|-
| | 19
| | 316.667
| | 6/5
| style="text-align:center;" | ^m3
| style="text-align:center;" | upminor 3rd
| style="text-align:center;" | F^
|-
| | 20
| | 333.333
| | 40/33
| style="text-align:center;" | v~3
| style="text-align:center;" | downmid 3rd
| style="text-align:center;" | F^^
|-
| | 21
| | 350
| | 11/9
| style="text-align:center;" | ~3
| style="text-align:center;" | mid 3rd
| style="text-align:center;" | F^<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 22
| | 366.667
| | 99/80
| style="text-align:center;" | ^~3
| style="text-align:center;" | upmid 3rd
| style="text-align:center;" | F#vv
|-
| | 23
| | 383.333
| | 5/4
| style="text-align:center;" | vM3
| style="text-align:center;" | downmajor 3rd
| style="text-align:center;" | F#v
|-
| | 24
| | 400
| | 44/35
| style="text-align:center;" | M3
| style="text-align:center;" | major 3rd
| style="text-align:center;" | F#
|-
| | 25
| | 416.667
| | 14/11
| style="text-align:center;" | ^M3
| style="text-align:center;" | upmajor 3rd
| style="text-align:center;" | F#^
|-
| | 26
| | 433.333
| | 9/7
| style="text-align:center;" | ^^M3
| style="text-align:center;" | double-upmajor 3rd
| style="text-align:center;" | F#^^
|-
| | 27
| | 450
| | 35/27
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4
| style="text-align:center;" | triple-up major 3rd,


[[image:xenharmonic/plot72.png]]
triple-down 4th
| style="text-align:center;" | F#^<span style="font-size: 90%; vertical-align: super;">3</span>, Gv<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 28
| | 466.667
| | 21/16
| style="text-align:center;" | vv4
| style="text-align:center;" | double-down 4th
| style="text-align:center;" | Gvv
|-
| | 29
| | 483.333
| | 33/25
| style="text-align:center;" | v4
| style="text-align:center;" | down 4th
| style="text-align:center;" | Gv
|-
| | 30
| | 500
| | 4/3
| style="text-align:center;" | P4
| style="text-align:center;" | perfect 4th
| style="text-align:center;" | G
|-
| | 31
| | 516.667
| | 27/20
| style="text-align:center;" | ^4
| style="text-align:center;" | up 4th
| style="text-align:center;" | G^
|-
| | 32
| | 533.333
| | 15/11
| style="text-align:center;" | ^^4
| style="text-align:center;" | double-up 4th
| style="text-align:center;" | G^^
|-
| | 33
| | 550
| | 11/8
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>4
| style="text-align:center;" | triple-up 4th
| style="text-align:center;" | G^<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 34
| | 566.667
| | 25/18
| style="text-align:center;" | vvA4
| style="text-align:center;" | double-down aug 4th
| style="text-align:center;" | G#vv
|-
| | 35
| | 583.333
| | 7/5
| style="text-align:center;" | vA4, vd5
| style="text-align:center;" | downaug 4th, updim 5th
| style="text-align:center;" | G#v, Abv
|-
| | 36
| | 600
| | 99/70
| style="text-align:center;" | A4, d5
| style="text-align:center;" | aug 4th, dim 5th
| style="text-align:center;" | G#, Ab
|-
| | 37
| | 616.667
| | 10/7
| style="text-align:center;" | ^A4, ^d5
| style="text-align:center;" | upaug 4th, downdim 5th
| style="text-align:center;" | G#^, Ab^
|-
| | 38
| | 633.333
| | 36/25
| style="text-align:center;" | ^^d5
| style="text-align:center;" | double-updim 5th
| style="text-align:center;" | Ab^^
|-
| | 39
| | 650
| | 16/11
| style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>5
| style="text-align:center;" | triple-down 5th
| style="text-align:center;" | Av<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 40
| | 666.667
| | 22/15
| style="text-align:center;" | vv5
| style="text-align:center;" | double-down 5th
| style="text-align:center;" | Avv
|-
| | 41
| | 683.333
| | 40/27
| style="text-align:center;" | v5
| style="text-align:center;" | down 5th
| style="text-align:center;" | Av
|-
| | 42
| | 700
| | 3/2
| style="text-align:center;" | P5
| style="text-align:center;" | perfect 5th
| style="text-align:center;" | A
|-
| | 43
| | 716.667
| | 50/33
| style="text-align:center;" | ^5
| style="text-align:center;" | up 5th
| style="text-align:center;" | A^
|-
| | 44
| | 733.333
| | 32/21
| style="text-align:center;" | ^^5
| style="text-align:center;" | double-up 5th
| style="text-align:center;" | A^^
|-
| | 45
| | 750
| | 54/35
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6
| style="text-align:center;" | triple-up 5th,


=Music=  
triple-down minor 6th
[[http://www.archive.org/details/Kotekant|Kotekant]] //[[http://www.archive.org/download/Kotekant/kotekant.mp3|play]]// by [[xenharmonic/Gene Ward Smith|Gene Ward Smith]]
| style="text-align:center;" | A^<span style="font-size: 90%; vertical-align: super;">3</span>, Bbv<span style="font-size: 90%; vertical-align: super;">3</span>
//[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3|Twinkle canon – 72 edo]]// by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]
|-
//[[http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3|Lazy Sunday]]// by [[Jake Freivald]] in the [[lazysunday]] scale.
| | 46
//[[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3|June Gloom #9]]// by Prent Rodgers
| | 766.667
| | 14/9
| style="text-align:center;" | vvm6
| style="text-align:center;" | double-downminor 6th
| style="text-align:center;" | Bbvv
|-
| | 47
| | 783.333
| | 11/7
| style="text-align:center;" | vm6
| style="text-align:center;" | downminor 6th
| style="text-align:center;" | Bbv
|-
| | 48
| | 800
| | 35/22
| style="text-align:center;" | m6
| style="text-align:center;" | minor 6th
| style="text-align:center;" | Bb
|-
| | 49
| | 816.667
| | 8/5
| style="text-align:center;" | ^m6
| style="text-align:center;" | upminor 6th
| style="text-align:center;" | Bb^
|-
| | 50
| | 833.333
| | 81/50
| style="text-align:center;" | v~6
| style="text-align:center;" | downmid 6th
| style="text-align:center;" | Bb^^
|-
| | 51
| | 850
| | 18/11
| style="text-align:center;" | ~6
| style="text-align:center;" | mid 6th
| style="text-align:center;" | Bv<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 52
| | 866.667
| | 33/20
| style="text-align:center;" | ^~6
| style="text-align:center;" | upmid 6th
| style="text-align:center;" | Bvv
|-
| | 53
| | 883.333
| | 5/3
| style="text-align:center;" | vM6
| style="text-align:center;" | downmajor 6th
| style="text-align:center;" | Bv
|-
| | 54
| | 900
| | 27/16
| style="text-align:center;" | M6
| style="text-align:center;" | major 6th
| style="text-align:center;" | B
|-
| | 55
| | 916.667
| | 56/33
| style="text-align:center;" | ^M6
| style="text-align:center;" | upmajor 6th
| style="text-align:center;" | B^
|-
| | 56
| | 933.333
| | 12/7
| style="text-align:center;" | ^^M6
| style="text-align:center;" | double-upmajor 6th
| style="text-align:center;" | B^^
|-
| | 57
| | 950
| | 121/70
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M6, v<span style="font-size: 90%; vertical-align: super;">3</span>m7
| style="text-align:center;" | triple-up major 6th,


=Scales=  
triple-down minor 7th
[[xenharmonic/smithgw72a|smithgw72a]], [[xenharmonic/smithgw72b|smithgw72b]], [[xenharmonic/smithgw72c|smithgw72c]], [[xenharmonic/smithgw72d|smithgw72d]], [[xenharmonic/smithgw72e|smithgw72e]], [[xenharmonic/smithgw72f|smithgw72f]], [[xenharmonic/smithgw72g|smithgw72g]], [[xenharmonic/smithgw72h|smithgw72h]], [[xenharmonic/smithgw72i|smithgw72i]], [[xenharmonic/smithgw72j|smithgw72j]]
| style="text-align:center;" | B^<span style="font-size: 90%; vertical-align: super;">3</span>, Cv<span style="font-size: 90%; vertical-align: super;">3</span>
[[xenharmonic/blackjack|blackjack]], [[xenharmonic/miracle_8|miracle_8]], [[xenharmonic/miracle_10|miracle_10]], [[xenharmonic/miracle_12|miracle_12]], [[xenharmonic/miracle_12a|miracle_12a]], [[xenharmonic/miracle_24hi|miracle_24hi]], [[xenharmonic/miracle_24lo|miracle_24lo]]
|-
[[xenharmonic/keenanmarvel|keenanmarvel]], [[xenharmonic/xenakis_chrome|xenakis_chrome]], [[xenharmonic/xenakis_diat|xenakis_diat]], [[xenharmonic/xenakis_schrome|xenakis_schrome]]
| | 58
[[xenharmonic/genus24255et72|Euler(24255) genus in 72 equal]]
| | 966.667
[[JuneGloom]]
| | 7/4
| style="text-align:center;" | vvm7
| style="text-align:center;" | double-downminor 7th
| style="text-align:center;" | Cvv
|-
| | 59
| | 983.333
| | 44/25
| style="text-align:center;" | vm7
| style="text-align:center;" | downminor 7th
| style="text-align:center;" | Cv
|-
| | 60
| | 1000
| | 16/9
| style="text-align:center;" | m7
| style="text-align:center;" | minor 7th
| style="text-align:center;" | C
|-
| | 61
| | 1016.667
| | 9/5
| style="text-align:center;" | ^m7
| style="text-align:center;" | upminor 7th
| style="text-align:center;" | C^
|-
| | 62
| | 1033.333
| | 20/11
| style="text-align:center;" | v~7
| style="text-align:center;" | downmid 7th
| style="text-align:center;" | C^^
|-
| | 63
| | 1050
| | 11/6
| style="text-align:center;" | ~7
| style="text-align:center;" | mid 7th
| style="text-align:center;" | C^<span style="font-size: 90%; vertical-align: super;">3</span>
|-
| | 64
| | 1066.667
| | 50/27
| style="text-align:center;" | ^~7
| style="text-align:center;" | upmin 7th
| style="text-align:center;" | C#vv
|-
| | 65
| | 1083.333
| | 15/8
| style="text-align:center;" | vM7
| style="text-align:center;" | downmajor 7th
| style="text-align:center;" | C#v
|-
| | 66
| | 1100
| | 66/35
| style="text-align:center;" | M7
| style="text-align:center;" | major 7th
| style="text-align:center;" | C#
|-
| | 67
| | 1116.667
| | 21/11
| style="text-align:center;" | ^M7
| style="text-align:center;" | upmajor 7th
| style="text-align:center;" | C#^
|-
| | 68
| | 1133.333
| | 27/14
| style="text-align:center;" | ^^M7
| style="text-align:center;" | double-upmajor 7th
| style="text-align:center;" | C#^^
|-
| | 69
| | 1150
| | 35/18
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M7, v<span style="font-size: 90%; vertical-align: super;">3</span>8
| style="text-align:center;" | triple-up major 7th,


=External links=
triple-down octave
* [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]]
| style="text-align:center;" | C#^<span style="font-size: 90%; vertical-align: super;">3</span>, Dv<span style="font-size: 90%; vertical-align: super;">3</span>
* [[http://orthodoxwiki.org/Byzantine_Chant|OrthodoxWiki Article on Byzantine chant, which uses 72edo]]
|-
* [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]]
| | 70
* [[http://www.ekmelic-music.org/en/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music
| | 1166.667
* [[http://72note.com/site/original.html|Rick Tagawa's 72edo site]], including theory and composers' list
| | 49/25
* [[@http://www.myspace.com/dawier|Danny Wier, composer and musician who specializes in 72-edo]]</pre></div>
| style="text-align:center;" | vv8
<h4>Original HTML content:</h4>
| style="text-align:center;" | double-down octave
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:18:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Temperaments"&gt;Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;
| style="text-align:center;" | Dvv
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;hr /&gt;
|-
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
| | 71
&lt;br /&gt;
| | 1183.333
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/96edo"&gt;96-edo&lt;/a&gt;), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.&lt;br /&gt;
| | 99/50
&lt;br /&gt;
| style="text-align:center;" | v8
72-tone equal temperament approximates &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/11-limit"&gt;11-limit just intonation&lt;/a&gt; exceptionally well, is consistent in the &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/17-limit"&gt;17-limit&lt;/a&gt;, and is the ninth &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;Zeta integral tuning&lt;/a&gt;. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.&lt;br /&gt;
| style="text-align:center;" | down octave
&lt;br /&gt;
| style="text-align:center;" | Dv
72 is an excellent tuning for &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt;, especially the 11-limit version, and the related rank three temperament &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Marvel%20family#Prodigy"&gt;prodigy&lt;/a&gt;, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.&lt;br /&gt;
|-
&lt;br /&gt;
| | 72
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Commas&lt;/h1&gt;
| | 1200
&lt;br /&gt;
| | 2/1
Commas tempered out by 72edo include...&lt;br /&gt;
| style="text-align:center;" | P8
&lt;br /&gt;
| style="text-align:center;" | perfect octave
 
| style="text-align:center;" | D
 
|}
&lt;table class="wiki_table"&gt;
Combining ups and downs notation with [[Kite's_color_notation|color notation]], qualities can be loosely associated with colors:
    &lt;tr&gt;
        &lt;th&gt;3-limit&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Pythagorean comma = 531441/524288 = |-19 12&amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;5-limit&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;kleisma = 15625/15552 = |-6 -5 6&amp;gt;&lt;br /&gt;
ampersand = 34171875/33554432 = |-25 7 6&amp;gt;&lt;br /&gt;
graviton = 129140163/128000000 = |-13 17 -6&amp;gt;&lt;br /&gt;
ennealimma = 7629394531250/7625597484987 = |1 -27 18&amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;


{| class="wikitable"
|-
! | quality
! | color
! | monzo format
! | examples
|-
| style="text-align:center;" | double-down minor
| style="text-align:center;" | blue
| style="text-align:center;" | {a, b, 0, 1}
| style="text-align:center;" | 7/6, 7/4
|-
| style="text-align:center;" | minor
| style="text-align:center;" | fourthward white
| style="text-align:center;" | {a, b}, b &lt; -1
| style="text-align:center;" | 32/27, 16/9
|-
| style="text-align:center;" | upminor
| style="text-align:center;" | green
| style="text-align:center;" | {a, b, -1}
| style="text-align:center;" | 6/5, 9/5
|-
| style="text-align:center;" | mid
| style="text-align:center;" | jade
| style="text-align:center;" | {a, b, 0, 0, 1}
| style="text-align:center;" | 11/9, 11/6
|-
| style="text-align:center;" | "
| style="text-align:center;" | amber
| style="text-align:center;" | {a, b, 0, 0, -1}
| style="text-align:center;" | 12/11, 18/11
|-
| style="text-align:center;" | downmajor
| style="text-align:center;" | yellow
| style="text-align:center;" | {a, b, 1}
| style="text-align:center;" | 5/4, 5/3
|-
| style="text-align:center;" | major
| style="text-align:center;" | fifthward white
| style="text-align:center;" | {a, b}, b &gt; 1
| style="text-align:center;" | 9/8, 27/16
|-
| style="text-align:center;" | double-up major
| style="text-align:center;" | red
| style="text-align:center;" | {a, b, 0, -1}
| style="text-align:center;" | 9/7, 12/7
|}
All 72edo chords can be named using ups and downs. Here are the blue, green, jade, yellow and red triads:


&lt;table class="wiki_table"&gt;
{| class="wikitable"
    &lt;tr&gt;
|-
        &lt;th&gt;7-limit&lt;br /&gt;
! | color of the 3rd
&lt;/th&gt;
! | JI chord
        &lt;th&gt;11-limit&lt;br /&gt;
! | notes as edosteps
&lt;/th&gt;
! | notes of C chord
        &lt;th&gt;13-limit&lt;br /&gt;
! | written name
&lt;/th&gt;
! | spoken name
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| style="text-align:center;" | blue
        &lt;td&gt;...............................&lt;br /&gt;
| style="text-align:center;" | 6:7:9
225/224&lt;br /&gt;
| style="text-align:center;" | 0-16-42
1029/1024&lt;br /&gt;
| style="text-align:center;" | C Ebvv G
2401/2400&lt;br /&gt;
| style="text-align:center;" | C.vvm
4375/4374&lt;br /&gt;
| style="text-align:center;" | C double-down minor
16875/16807&lt;br /&gt;
|-
19683/19600&lt;br /&gt;
| style="text-align:center;" | green
420175/419904&lt;br /&gt;
| style="text-align:center;" | 10:12:15
250047/250000&lt;br /&gt;
| style="text-align:center;" | 0-19-42
&lt;/td&gt;
| style="text-align:center;" | C Eb^ G
        &lt;td&gt;.......................&lt;br /&gt;
| style="text-align:center;" | C.^m
243/242&lt;br /&gt;
| style="text-align:center;" | C upminor
385/384&lt;br /&gt;
|-
441/440&lt;br /&gt;
| style="text-align:center;" | jade
540/539&lt;br /&gt;
| style="text-align:center;" | 18:22:27
1375/1372&lt;br /&gt;
| style="text-align:center;" | 0-21-42
3025/3024&lt;br /&gt;
| style="text-align:center;" | C Ev<span style="font-size: 90%; vertical-align: super;">3</span> G
4000/3993&lt;br /&gt;
| style="text-align:center;" | C~
6250/6237&lt;br /&gt;
| style="text-align:center;" | C mid
9801/9800&lt;br /&gt;
|-
&lt;/td&gt;
| style="text-align:center;" | yellow
        &lt;td&gt;.......................&lt;br /&gt;
| style="text-align:center;" | 4:5:6
169/168&lt;br /&gt;
| style="text-align:center;" | 0-23-42
325/324&lt;br /&gt;
| style="text-align:center;" | C Ev G
351/350&lt;br /&gt;
| style="text-align:center;" | C.v
364/363&lt;br /&gt;
| style="text-align:center;" | C downmajor or C dot down
625/624&lt;br /&gt;
|-
676/675&lt;br /&gt;
| style="text-align:center;" | red
729/728&lt;br /&gt;
| style="text-align:center;" | 14:18:27
1001/1000&lt;br /&gt;
| style="text-align:center;" | 0-26-42
1575/1573&lt;br /&gt;
| style="text-align:center;" | C E^^ G
1716/1715&lt;br /&gt;
| style="text-align:center;" | C.^^
2080/2079&lt;br /&gt;
| style="text-align:center;" | C double-upmajor or C dot double-up
6656/6655&lt;br /&gt;
|}
&lt;/td&gt;
For a more complete list, see [[Ups_and_Downs_Notation#Chord names in other EDOs|Ups and Downs Notation - Chord names in other EDOs]].
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
=Linear temperaments=
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Temperaments&lt;/h1&gt;
&lt;br /&gt;
It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.&lt;br /&gt;
&lt;br /&gt;
See also &lt;a class="wiki_link" href="/List%20of%20edo-distinct%2072et%20rank%20two%20temperaments"&gt;List of edo-distinct 72et rank two temperaments&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Harmonic Scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Harmonic Scale&lt;/h1&gt;
Mode 8 of the harmonic series -- &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/overtone%20scales"&gt;overtones 8 through 16&lt;/a&gt;, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).&lt;br /&gt;
&lt;br /&gt;


{| class="wikitable"
|-
! | Periods per octave
! | Generator
! | Names
|-
| | 1
| | 1\72
| | [[Quincy|quincy]]
|-
| | 1
| | 5\72
| | [[marvolo|marvolo]]
|-
| | 1
| | 7\72
| | [[Miracle|miracle]]/benediction/manna
|-
| | 1
| | 11\72
| |
|-
| | 1
| | 13\72
| |
|-
| | 1
| | 17\72
| | [[Neominor|neominor]]
|-
| | 1
| | 19\72
| | [[catakleismic|catakleismic]]
|-
| | 1
| | 23\72
| |
|-
| | 1
| | 25\72
| | [[Sqrtphi|sqrtphi]]
|-
| | 1
| | 29\72
| |
|-
| | 1
| | 31\72
| | [[Marvo|marvo]]/zarvo
|-
| | 1
| | 35\72
| | [[cotritone|cotritone]]
|-
| | 2
| | 1\72
| |
|-
| | 2
| | 5\72
| | [[Harry|harry]]
|-
| | 2
| | 7\72
| |
|-
| | 2
| | 11\72
| | [[Unidec|unidec]]/hendec
|-
| | 2
| | 13\72
| | [[wizard|wizard]]/lizard/gizzard
|-
| | 2
| | 17\72
| |
|-
| | 3
| | 1\72
| |
|-
| | 3
| | 5\72
| | [[Tritikleismic|tritikleismic]]
|-
| | 3
| | 7\72
| |
|-
| | 3
| | 11\72
| | [[Mirkat|mirkat]]
|-
| | 4
| | 1\72
| | [[Quadritikleismic|quadritikleismic]]
|-
| | 4
| | 5\72
| |
|-
| | 4
| | 7\72
| |
|-
| | 6
| | 1\72
| |
|-
| | 6
| | 5\72
| |
|-
| | 8
| | 1\72
| | [[Octoid|octoid]]
|-
| | 8
| | 2\72
| | [[Octowerck|octowerck]]
|-
| | 8
| | 4\72
| |
|-
| | 9
| | 1\72
| |
|-
| | 9
| | 3\72
| | [[Ennealimmal|ennealimmal]]/ennealimmic
|-
| | 12
| | 1\72
| | [[Compton|compton]]
|-
| | 18
| | 1\72
| | [[Hemiennealimmal|hemiennealimmal]]
|-
| | 24
| | 1\72
| | [[Hours|hours]]
|-
| | 36
| | 1\72
| |
|}


&lt;table class="wiki_table"&gt;
=Z function=
    &lt;tr&gt;
72edo is the ninth [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The_Riemann_Zeta_Function_and_Tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
        &lt;td&gt;Overtones in &amp;quot;Mode 8&amp;quot;:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...as JI Ratio from 1/1:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203.9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;386.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;702.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;840.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;968.8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1088.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Nearest degree of 72edo:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;383.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;833.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;966.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1083.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Steps as Freq. Ratio:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9:8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11:10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13:12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14:13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15:14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16:15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203.9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;182.4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150.6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;119.4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;111.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Nearest degree of 72edo:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;183.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[File:plot72.png|alt=plot72.png|plot72.png]]
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Intervals&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
=Music=
    &lt;tr&gt;
[http://www.archive.org/details/Kotekant Kotekant] ''[http://www.archive.org/download/Kotekant/kotekant.mp3 play]'' by [[Gene_Ward_Smith|Gene Ward Smith]]
        &lt;td&gt;degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;cents value&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;approximate ratios (11-limit)&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="3" style="text-align: center;"&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation"&gt;ups and downs &lt;/a&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation"&gt;notation&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;perfect unison&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;up unison&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45/44&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-up unison&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33/32&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;1, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up unison,&lt;br /&gt;
triple-down minor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Ebv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;66.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vvm2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-downminor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ebvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vm2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downminor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ebv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;m2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;minor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^m2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upminor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v~2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmid 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;~2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;mid 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ev&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^~2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmid 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Evv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;183.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vM2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmajor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ev&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;M2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;major 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/22&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^M2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmajor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;233.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^M2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-upmajor 2nd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;250&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/70&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M2, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up major 2nd,&lt;br /&gt;
triple-down minor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Fv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vvm3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-downminor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Fvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33/28&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vm3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downminor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Fv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/21&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;m3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;minor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;316.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^m3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upminor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;333.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v~3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmid 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;~3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;mid 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;99/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^~3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmid 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#vv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;383.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vM3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmajor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#v&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;M3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;major 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;416.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^M3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmajor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;433.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^M3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-upmajor 3rd&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M3, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up major 3rd,&lt;br /&gt;
triple-down 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Gv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;466.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vv4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-down 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;483.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;down 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;500&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;perfect 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;516.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;up 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;533.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-up 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;566.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vvA4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-down aug 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#vv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;583.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vA4, vd5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downaug 4th, updim 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#v, Abv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;99/70&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A4, d5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;aug 4th, dim 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#, Ab&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;616.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^A4, ^d5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upaug 4th, downdim 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#^, Ab^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;633.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^d5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-updim 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ab^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;650&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-down 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Av&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;666.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vv5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-down 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Avv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;683.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;down 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Av&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;perfect 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;716.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;up 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;733.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/21&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-up 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;750&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;54/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;5, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up 5th,&lt;br /&gt;
triple-down minor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Bbv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;766.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vvm6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-downminor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bbvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;783.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vm6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downminor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bbv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/22&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;m6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;minor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;816.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^m6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upminor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;833.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/50&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v~6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmid 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;850&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;~6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;mid 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;866.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^~6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmid 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;883.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vM6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmajor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;900&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;M6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;major 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;56/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^M6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmajor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;933.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^M6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-upmajor 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;950&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;121/70&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M6, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;m7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up major 6th,&lt;br /&gt;
triple-down minor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Cv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;966.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vvm7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-downminor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Cvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;983.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vm7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downminor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Cv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;m7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;minor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1016.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^m7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upminor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1033.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v~7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmid 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;~7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;mid 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1066.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^~7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmin 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#vv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1083.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vM7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;downmajor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#v&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1100&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;66/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;M7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;major 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1116.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^M7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;upmajor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1133.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^M7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-upmajor 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#^^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;M7, v&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;triple-up major 7th,&lt;br /&gt;
triple-down octave&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C#^&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;, Dv&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1166.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;49/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;vv8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;double-down octave&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Dvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1183.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;99/50&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;down octave&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Dv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;perfect octave&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Combining ups and downs notation with &lt;a class="wiki_link" href="/Kite%27s%20color%20notation"&gt;color notation&lt;/a&gt;, qualities can be loosely associated with colors:&lt;br /&gt;
''[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 Twinkle canon – 72 edo]'' by [http://soonlabel.com/xenharmonic/archives/573 Claudi Meneghin]


''[http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 Lazy Sunday]'' by [[Jake_Freivald|Jake Freivald]] in the [[lazysunday|lazysunday]] scale.


&lt;table class="wiki_table"&gt;
''[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 June Gloom #9]'' by Prent Rodgers
    &lt;tr&gt;
        &lt;th&gt;quality&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;color&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;monzo format&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;examples&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;double-down minor&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;blue&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, 0, 1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/6, 7/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;minor&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;fourthward white&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b}, b &amp;lt; -1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;32/27, 16/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;upminor&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;green&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, -1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6/5, 9/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;mid&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;jade&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, 0, 0, 1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11/9, 11/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;amber&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, 0, 0, -1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12/11, 18/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;downmajor&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;yellow&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, 1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5/4, 5/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;major&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;fifthward white&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b}, b &amp;gt; 1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/8, 27/16&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;double-up major&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;red&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;{a, b, 0, -1}&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/7, 12/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


All 72edo chords can be named using ups and downs. Here are the blue, green, jade, yellow and red triads:&lt;br /&gt;
=Scales=
[[smithgw72a|smithgw72a]], [[smithgw72b|smithgw72b]], [[smithgw72c|smithgw72c]], [[smithgw72d|smithgw72d]], [[smithgw72e|smithgw72e]], [[smithgw72f|smithgw72f]], [[smithgw72g|smithgw72g]], [[smithgw72h|smithgw72h]], [[smithgw72i|smithgw72i]], [[smithgw72j|smithgw72j]]


[[blackjack|blackjack]], [[miracle_8|miracle_8]], [[miracle_10|miracle_10]], [[miracle_12|miracle_12]], [[miracle_12a|miracle_12a]], [[miracle_24hi|miracle_24hi]], [[miracle_24lo|miracle_24lo]]


&lt;table class="wiki_table"&gt;
[[keenanmarvel|keenanmarvel]], [[xenakis_chrome|xenakis_chrome]], [[xenakis_diat|xenakis_diat]], [[xenakis_schrome|xenakis_schrome]]
    &lt;tr&gt;
        &lt;th&gt;color of the 3rd&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;JI chord&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;notes as edosteps&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;notes of C chord&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;written name&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;spoken name&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;blue&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6:7:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0-16-42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C Ebvv G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C.vvm&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C double-down minor&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;green&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;10:12:15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0-19-42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C Eb^ G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C.^m&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C upminor&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;jade&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;18:22:27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0-21-42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C Ev&lt;span style="font-size: 90%; vertical-align: super;"&gt;3&lt;/span&gt; G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C~&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C mid&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;yellow&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4:5:6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0-23-42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C Ev G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C.v&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C downmajor or C dot down&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;red&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14:18:27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0-26-42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C E^^ G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C.^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C double-upmajor or C dot double-up&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


For a more complete list, see &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation#Chord%20names%20in%20other%20EDOs"&gt;Ups and Downs Notation - Chord names in other EDOs&lt;/a&gt;.&lt;br /&gt;
[[genus24255et72|Euler(24255) genus in 72 equal]]
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Linear temperaments&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
[[JuneGloom|JuneGloom]]
    &lt;tr&gt;
        &lt;th&gt;Periods per octave&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Names&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/quincy"&gt;quincy&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/marvolo"&gt;marvolo&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle"&gt;miracle&lt;/a&gt;/benediction/manna&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/neominor"&gt;neominor&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/catakleismic"&gt;catakleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/sqrtphi"&gt;sqrtphi&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/marvo"&gt;marvo&lt;/a&gt;/zarvo&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/cotritone"&gt;cotritone&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/harry"&gt;harry&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/unidec"&gt;unidec&lt;/a&gt;/hendec&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/wizard"&gt;wizard&lt;/a&gt;/lizard/gizzard&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/tritikleismic"&gt;tritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/mirkat"&gt;mirkat&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/quadritikleismic"&gt;quadritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/octoid"&gt;octoid&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/octowerck"&gt;octowerck&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/ennealimmal"&gt;ennealimmal&lt;/a&gt;/ennealimmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/compton"&gt;compton&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/hemiennealimmal"&gt;hemiennealimmal&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/hours"&gt;hours&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
=External links=
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Z function&lt;/h1&gt;
<ul><li>[http://en.wikipedia.org/wiki/72_tone_equal_temperament Wikipedia article on 72edo]</li><li>[http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo]</li><li>[http://en.wikipedia.org/wiki/Joe_Maneri Wikipedia article on Joe Maneri (1927-2009)]</li><li>[http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music</li><li>[http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list</li><li>[http://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo]</li></ul>     [[Category:edo]]
72edo is the ninth &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
[[Category:listen]]
&lt;br /&gt;
[[Category:marvel]]
&lt;!-- ws:start:WikiTextLocalImageRule:1936:&amp;lt;img src=&amp;quot;https://xenharmonic.wikispaces.com/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="https://xenharmonic.wikispaces.com/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:1936 --&gt;&lt;br /&gt;
[[Category:miracle]]
&lt;br /&gt;
[[Category:moria]]
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Music&lt;/h1&gt;
[[Category:prodigy]]
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;em&gt;&lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt;&lt;/em&gt; by &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
[[Category:wizard]]
&lt;em&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3" rel="nofollow"&gt;Twinkle canon – 72 edo&lt;/a&gt;&lt;/em&gt; by &lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow"&gt;Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
[[Category:zeta]]
&lt;em&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3" rel="nofollow"&gt;Lazy Sunday&lt;/a&gt;&lt;/em&gt; by &lt;a class="wiki_link" href="/Jake%20Freivald"&gt;Jake Freivald&lt;/a&gt; in the &lt;a class="wiki_link" href="/lazysunday"&gt;lazysunday&lt;/a&gt; scale.&lt;br /&gt;
&lt;em&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3" rel="nofollow"&gt;June Gloom #9&lt;/a&gt;&lt;/em&gt; by Prent Rodgers&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Scales&lt;/h1&gt;
&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72a"&gt;smithgw72a&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72b"&gt;smithgw72b&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72c"&gt;smithgw72c&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72d"&gt;smithgw72d&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72e"&gt;smithgw72e&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72f"&gt;smithgw72f&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72g"&gt;smithgw72g&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72h"&gt;smithgw72h&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72i"&gt;smithgw72i&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/smithgw72j"&gt;smithgw72j&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/blackjack"&gt;blackjack&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_8"&gt;miracle_8&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_10"&gt;miracle_10&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_12"&gt;miracle_12&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_12a"&gt;miracle_12a&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_24hi"&gt;miracle_24hi&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/miracle_24lo"&gt;miracle_24lo&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/keenanmarvel"&gt;keenanmarvel&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/xenakis_chrome"&gt;xenakis_chrome&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/xenakis_diat"&gt;xenakis_diat&lt;/a&gt;, &lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/xenakis_schrome"&gt;xenakis_schrome&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="https://xenharmonic.wikispaces.com/genus24255et72"&gt;Euler(24255) genus in 72 equal&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/JuneGloom"&gt;JuneGloom&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;External links&lt;/h1&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://72note.com/site/original.html" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.myspace.com/dawier" rel="nofollow" target="_blank"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018


72-tone equal temperament (or 72-edo) divides the octave into 72 steps or moria. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of 24-tone equal temperament, a common and standard tuning of Arabic music, and has itself been used to tune Turkish music.

Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with 96-edo), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.

72-tone equal temperament approximates 11-limit just intonation exceptionally well, is consistent in the 17-limit, and is the ninth Zeta integral tuning. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.

72 is an excellent tuning for miracle temperament, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.

Commas

Commas tempered out by 72edo include...

3-limit
Pythagorean comma = 531441/524288 = |-19 12>
5-limit
kleisma = 15625/15552 = |-6 -5 6>

ampersand = 34171875/33554432 = |-25 7 6>

graviton = 129140163/128000000 = |-13 17 -6>

ennealimma = 7629394531250/7625597484987 = |1 -27 18>

7-limit 11-limit 13-limit
...............................

225/224

1029/1024

2401/2400

4375/4374

16875/16807

19683/19600

420175/419904

250047/250000

.......................

243/242

385/384

441/440

540/539

1375/1372

3025/3024

4000/3993

6250/6237

9801/9800

.......................

169/168

325/324

351/350

364/363

625/624

676/675

729/728

1001/1000

1575/1573

1716/1715

2080/2079

6656/6655

Temperaments

It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.

See also List of edo-distinct 72et rank two temperaments.

Harmonic Scale

Mode 8 of the harmonic series -- overtones 8 through 16, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).

Overtones in "Mode 8": 8 9 10 11 12 13 14 15 16
...as JI Ratio from 1/1: 1/1 9/8 5/4 11/8 3/2 13/8 7/4 15/8 2/1
...in cents: 0 203.9 386.3 551.3 702.0 840.5 968.8 1088.3 1200.0
Nearest degree of 72edo: 0 12 23 33 42 50 58 65 72
...in cents: 0 200.0 383.3 550.0 700.0 833.3 966.7 1083.3 1200.0
Steps as Freq. Ratio: 9:8 10:9 11:10 12:11 13:12 14:13 15:14 16:15
...in cents: 203.9 182.4 165.0 150.6 138.6 128.3 119.4 111.7
Nearest degree of 72edo: 12 11 10 9 8 8 7 7
...in cents: 200.0 183.3 166.7 150.0 133.3 133.3 116.7 116.7

Intervals

degrees cents value approximate ratios (11-limit) ups and downs notation
0 0 1/1 P1 perfect unison D
1 16.667 81/80 ^1 up unison D^
2 33.333 45/44 ^^ double-up unison D^^
3 50 33/32 ^31, v3m2 triple-up unison,

triple-down minor 2nd

D^3, Ebv3
4 66.667 25/24 vvm2 double-downminor 2nd Ebvv
5 83.333 21/20 vm2 downminor 2nd Ebv
6 100 35/33 m2 minor 2nd Eb
7 116.667 15/14 ^m2 upminor 2nd Eb^
8 133.333 27/25 v~2 downmid 2nd Eb^^
9 150 12/11 ~2 mid 2nd Ev3
10 166.667 11/10 ^~2 upmid 2nd Evv
11 183.333 10/9 vM2 downmajor 2nd Ev
12 200 9/8 M2 major 2nd E
13 216.667 25/22 ^M2 upmajor 2nd E^
14 233.333 8/7 ^^M2 double-upmajor 2nd E^^
15 250 81/70 ^3M2, v3m3 triple-up major 2nd,

triple-down minor 3rd

E^3, Fv3
16 266.667 7/6 vvm3 double-downminor 3rd Fvv
17 283.333 33/28 vm3 downminor 3rd Fv
18 300 25/21 m3 minor 3rd F
19 316.667 6/5 ^m3 upminor 3rd F^
20 333.333 40/33 v~3 downmid 3rd F^^
21 350 11/9 ~3 mid 3rd F^3
22 366.667 99/80 ^~3 upmid 3rd F#vv
23 383.333 5/4 vM3 downmajor 3rd F#v
24 400 44/35 M3 major 3rd F#
25 416.667 14/11 ^M3 upmajor 3rd F#^
26 433.333 9/7 ^^M3 double-upmajor 3rd F#^^
27 450 35/27 ^3M3, v34 triple-up major 3rd,

triple-down 4th

F#^3, Gv3
28 466.667 21/16 vv4 double-down 4th Gvv
29 483.333 33/25 v4 down 4th Gv
30 500 4/3 P4 perfect 4th G
31 516.667 27/20 ^4 up 4th G^
32 533.333 15/11 ^^4 double-up 4th G^^
33 550 11/8 ^34 triple-up 4th G^3
34 566.667 25/18 vvA4 double-down aug 4th G#vv
35 583.333 7/5 vA4, vd5 downaug 4th, updim 5th G#v, Abv
36 600 99/70 A4, d5 aug 4th, dim 5th G#, Ab
37 616.667 10/7 ^A4, ^d5 upaug 4th, downdim 5th G#^, Ab^
38 633.333 36/25 ^^d5 double-updim 5th Ab^^
39 650 16/11 v35 triple-down 5th Av3
40 666.667 22/15 vv5 double-down 5th Avv
41 683.333 40/27 v5 down 5th Av
42 700 3/2 P5 perfect 5th A
43 716.667 50/33 ^5 up 5th A^
44 733.333 32/21 ^^5 double-up 5th A^^
45 750 54/35 ^35, v3m6 triple-up 5th,

triple-down minor 6th

A^3, Bbv3
46 766.667 14/9 vvm6 double-downminor 6th Bbvv
47 783.333 11/7 vm6 downminor 6th Bbv
48 800 35/22 m6 minor 6th Bb
49 816.667 8/5 ^m6 upminor 6th Bb^
50 833.333 81/50 v~6 downmid 6th Bb^^
51 850 18/11 ~6 mid 6th Bv3
52 866.667 33/20 ^~6 upmid 6th Bvv
53 883.333 5/3 vM6 downmajor 6th Bv
54 900 27/16 M6 major 6th B
55 916.667 56/33 ^M6 upmajor 6th B^
56 933.333 12/7 ^^M6 double-upmajor 6th B^^
57 950 121/70 ^3M6, v3m7 triple-up major 6th,

triple-down minor 7th

B^3, Cv3
58 966.667 7/4 vvm7 double-downminor 7th Cvv
59 983.333 44/25 vm7 downminor 7th Cv
60 1000 16/9 m7 minor 7th C
61 1016.667 9/5 ^m7 upminor 7th C^
62 1033.333 20/11 v~7 downmid 7th C^^
63 1050 11/6 ~7 mid 7th C^3
64 1066.667 50/27 ^~7 upmin 7th C#vv
65 1083.333 15/8 vM7 downmajor 7th C#v
66 1100 66/35 M7 major 7th C#
67 1116.667 21/11 ^M7 upmajor 7th C#^
68 1133.333 27/14 ^^M7 double-upmajor 7th C#^^
69 1150 35/18 ^3M7, v38 triple-up major 7th,

triple-down octave

C#^3, Dv3
70 1166.667 49/25 vv8 double-down octave Dvv
71 1183.333 99/50 v8 down octave Dv
72 1200 2/1 P8 perfect octave D

Combining ups and downs notation with color notation, qualities can be loosely associated with colors:

quality color monzo format examples
double-down minor blue {a, b, 0, 1} 7/6, 7/4
minor fourthward white {a, b}, b < -1 32/27, 16/9
upminor green {a, b, -1} 6/5, 9/5
mid jade {a, b, 0, 0, 1} 11/9, 11/6
" amber {a, b, 0, 0, -1} 12/11, 18/11
downmajor yellow {a, b, 1} 5/4, 5/3
major fifthward white {a, b}, b > 1 9/8, 27/16
double-up major red {a, b, 0, -1} 9/7, 12/7

All 72edo chords can be named using ups and downs. Here are the blue, green, jade, yellow and red triads:

color of the 3rd JI chord notes as edosteps notes of C chord written name spoken name
blue 6:7:9 0-16-42 C Ebvv G C.vvm C double-down minor
green 10:12:15 0-19-42 C Eb^ G C.^m C upminor
jade 18:22:27 0-21-42 C Ev3 G C~ C mid
yellow 4:5:6 0-23-42 C Ev G C.v C downmajor or C dot down
red 14:18:27 0-26-42 C E^^ G C.^^ C double-upmajor or C dot double-up

For a more complete list, see Ups and Downs Notation - Chord names in other EDOs.

Linear temperaments

Periods per octave Generator Names
1 1\72 quincy
1 5\72 marvolo
1 7\72 miracle/benediction/manna
1 11\72
1 13\72
1 17\72 neominor
1 19\72 catakleismic
1 23\72
1 25\72 sqrtphi
1 29\72
1 31\72 marvo/zarvo
1 35\72 cotritone
2 1\72
2 5\72 harry
2 7\72
2 11\72 unidec/hendec
2 13\72 wizard/lizard/gizzard
2 17\72
3 1\72
3 5\72 tritikleismic
3 7\72
3 11\72 mirkat
4 1\72 quadritikleismic
4 5\72
4 7\72
6 1\72
6 5\72
8 1\72 octoid
8 2\72 octowerck
8 4\72
9 1\72
9 3\72 ennealimmal/ennealimmic
12 1\72 compton
18 1\72 hemiennealimmal
24 1\72 hours
36 1\72

Z function

72edo is the ninth zeta integral edo, as well as being a peak and gap edo, and the maximum value of the Z function in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.

plot72.png

Music

Kotekant play by Gene Ward Smith

Twinkle canon – 72 edo by Claudi Meneghin

Lazy Sunday by Jake Freivald in the lazysunday scale.

June Gloom #9 by Prent Rodgers

Scales

smithgw72a, smithgw72b, smithgw72c, smithgw72d, smithgw72e, smithgw72f, smithgw72g, smithgw72h, smithgw72i, smithgw72j

blackjack, miracle_8, miracle_10, miracle_12, miracle_12a, miracle_24hi, miracle_24lo

keenanmarvel, xenakis_chrome, xenakis_diat, xenakis_schrome

Euler(24255) genus in 72 equal

JuneGloom

External links